首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The identification of genes selected during and after plant domestication is an important research topic to enhance knowledge on adaptative evolution. Adaptation to different climates was a key factor in the spread of domesticated crops. We conducted a study to identify genes responsible for these adaptations in pearl millet and developed an association framework to identify genetic variations associated with the phenotype in this species. A set of 90 inbred lines genotyped using microsatellite loci and AFLP markers was used. The population structure was assessed using two different Bayesian approaches that allow inbreeding or not. Association studies were performed using a linear mixed model considering both the population structure and familial relationships between inbred lines. We assessed the ability of the method to limit the number of false positive associations on the basis of the two different Bayesian methods, the number of populations considered and different morphological traits while also assessing the power of the methodology to detect given additive effects. Finally, we applied this methodology to a set of eight pearl millet genes homologous to cereal flowering pathway genes. We found significant associations between several polymorphisms of the pearl millet PHYC gene and flowering time, spike length, and stem diameter in the inbred line panel. To validate this association, we performed a second association analysis in a different set of pearl millet individuals from Niger. We confirmed a significant association between genetic variation in this gene and these characters.DOMESTICATION and dispersion of cultivated plants were associated with their adaptation to the agricultural environment. These adaptations led to genetic changes shared by all individuals of a cultivated species (domestication genes) or to variations between varieties within a cultivated species (genes controlling varietal differences). Domestication genes like tb1 (Doebley et al. 1997; Wang et al. 1999) in maize (Zea mays) were selected very early by human populations (Jaenicke-Després et al. 2003). After the first early selection, adaptation of the flowering phenotype to different climatic conditions was certainly a key innovation that enabled colonization of new environments. One of the most well-known examples was the adaptation of maize—a tropical plant—to northern climates. Maize cultivation spread late to northeastern America. By 1000 YBP, only maize was an established staple crop (Fritz 1995). A genetic variant of the Dwarf8 gene led to an earlier flowering phenotype (Thornsberry et al. 2001). This early allele was present at a high frequency in North America and was certainly selected after the domestication of maize under northern climatic conditions (Camus-Kulandaivelu et al. 2006).Pearl millet (Pennisetum glaucum [(L.) R. Br.]), one of the most important West African cereals, was most likely domesticated once in the Sahelian zone of West Africa (Oumar et al. 2008). By 3500 YBP, it was already being cultivated throughout Sahelian and tropical West African countries (D''Andrea et al. 2001; D''Andrea and Casey 2002). The adaptation of pearl millet in West Africa was also associated with an environmental gradient (Haussmann et al. 2006). Pearl millet varieties from tropical coastal West Africa flower very late (up to 160 days from planting to female flowering) as compared to varieties from Sahelian West Africa, which may have a flowering time as short as 45 days (Haussmann et al. 2006). The genetic factors underlying the differences between these varieties are still unknown.Association studies offer new opportunities for assessing the role of a particular gene on a phenotype. Contrary to QTL analysis, association studies have the challenging task of taking an unknown evolutionary history of studied individuals into account. For example, population structure is a common confounding effect in association studies (Pritchard et al. 2000a). Allele frequencies evolve between divergent structured populations via drift, mutation, and selection. Differences in allele frequencies may be correlated with any morphological traits that differentiate two populations. Then a statistical correlation between a gene and a trait is not necessarily associated with a “causative” relationship between the gene and the morphology, which can lead to a high number of false positives. The use of population structure to correct the number of false positives was a significant breakthrough in plant studies (Thornsberry et al. 2001). This approach was recently further refined by also using a matrix of kinship coefficients, which proves efficient when there is a complex structure and familial relationship between individuals (Yu et al. 2006; Kang et al. 2008; Stich et al. 2008). Complex structures and familial relationships are common in inbred cultivated crop material. In the current association study framework (Thornsberry et al. 2001; Yu et al. 2006; Casa et al. 2008; Kang et al. 2008; Stich et al. 2008), population structure was assessed using STRUCTURE software (Pritchard et al. 2000b). This tool is not implemented to deal with selfed inbred materials or inbred species (Pritchard et al. 2000b). Through new methodological developments, population structure analysis can now be performed using Bayesian methods in these particular cases (Gao et al. 2007). The extent to which the power of association studies will differ when dealing with inbred material or selfing species using either Bayesian method has yet to be evaluated.In this study, we developed an association framework for pearl millet to assess the role of flowering pathway genes. We assessed the ability of the method to control the number of false positives, while taking different methodological inferences of population structure that allow inbreeding or not into account. We also assessed the power of the association framework to detect given additive genetic effects. Finally, we applied this method to a set of eight flowering time gene homologs sequenced in pearl millet. We assessed sequence variation in light perception genes (PHYA, PHYB, PHYC, and CRY2) and downstream regulators of flowering (GI, Hd6, Hd1, and FLORICAULA). Variation was detected in the PHYC gene associated with variations in flowering time and morphological traits. This association was noted in two different data sets.  相似文献   

3.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

4.
5.
For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.  相似文献   

6.
Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10-13; adjusted p= 2.2 x 10-3). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 – 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans.  相似文献   

7.
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant''s elemental composition (ionome). Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL) populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS). Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.  相似文献   

8.
Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator.  相似文献   

9.
Flowering time, a critical adaptive trait, is modulated by several environmental cues. These external signals converge on a small set of genes that in turn mediate the flowering response. Mutant analysis and subsequent molecular studies have revealed that one of these integrator genes, FLOWERING LOCUS T (FT), responds to photoperiod and temperature cues, two environmental parameters that greatly influence flowering time. As the central player in the transition to flowering, the protein coding sequence of FT and its function are highly conserved across species. Using QTL mapping with a new advanced intercross-recombinant inbred line (AI-RIL) population, we show that a QTL tightly linked to FT contributes to natural variation in the flowering response to the combined effects of photoperiod and ambient temperature. Using heterogeneous inbred families (HIF) and introgression lines, we fine map the QTL to a 6.7 kb fragment in the FT promoter. We confirm by quantitative complementation that FT has differential activity in the two parental strains. Further support for FT underlying the QTL comes from a new approach, quantitative knockdown with artificial microRNAs (amiRNAs). Consistent with the causal sequence polymorphism being in the promoter, we find that the QTL affects FT expression. Taken together, these results indicate that allelic variation at pathway integrator genes such as FT can underlie phenotypic variability and that this may be achieved through cis-regulatory changes.MOLECULAR analysis of the phenotypic variation in life history traits is key to understanding how plants evolve in diverse natural environments. Among such traits, flowering time is critical for the reproductive success of the plant and is highly variable among natural Arabidopsis thaliana strains, providing an attractive paradigm for studying adaptive evolution (Johanson et al. 2000; Hagenblad and Nordborg 2002; Stinchcombe et al. 2004; Lempe et al. 2005; Shindo et al. 2005; Werner et al. 2005a). Two major environmental parameters that modulate flowering time are light and temperature (Koornneef et al. 1998). Temperature and light conditions vary substantially within the geographical range of A. thaliana, and natural populations presumably need to adapt to the local environment to ensure reproductive success. Flowering in A. thaliana is generally accelerated by long photoperiods, vernalization (exposure to winter-like conditions), and elevated ambient temperatures (Bäurle and Dean 2006). All these cues favor flowering of A. thaliana during spring or early summer, although the contribution from each individual cue and the interactions among them vary depending on the local environmental conditions (Wilczek et al. 2009).Flowering time is controlled through several genetic cascades that converge on a set of integrator genes including FLOWERING LOCUS T (FT), which encodes a protein that is highly conserved in flowering plants (Kardailsky et al. 1999; Kobayashi et al. 1999; Ahn et al. 2006). FT and its homologs are very likely an integral part of the mobile signal (florigen) that is produced in leaves and travels to the shoot apex to induce flowering (Abe et al. 2005; Wigge et al. 2005; Lifschitz et al. 2006; Corbesier et al. 2007; Jaeger and Wigge 2007; Lin et al. 2007; Mathieu et al. 2007; Tamaki et al. 2007; Notaguchi et al. 2008). In A. thaliana, FT expression is controlled by photoperiod, vernalization, and ambient growth temperature. Photoperiod in conjunction with the circadian clock promotes daily oscillations in FT RNA levels, which are greatly elevated at the end of long days. The central role of FT in determining the timing of flowering appears to be conserved in many species, making FT an attractive target for altering flowering time in cereals and other plants of economic importance (recently reviewed by Kobayashi and Weigel 2007; Turck et al. 2008).Wild strains of A. thaliana show extensive variation in flowering time and much of this is due to variation in the activity of the floral repressor FLOWERING LOCUS C (FLC). While some of this variation maps to FLC itself, much of it is due to differential activity at the epistatically acting FRIGIDA (FRI) locus (Michaels and Amasino 1999; Sheldon et al. 1999; Johanson et al. 2000; Michaels et al. 2003; Lempe et al. 2005; Shindo et al. 2005, 2006). Flowering is typically substantially delayed when the FRI/FLC system is active, unless these plants are first vernalized. However, FRI and FLC do not explain all of the flowering time variation seen in wild strains, and functionally divergent alleles of several additional flowering regulators, including CRYPTOCHROME 2 (CRY2), HUA2, FLOWERING LOCUS M (FLM), PHYTOCHROME C (PHYC), and PHYTOCHROME D (PHYD), have been identified in different strains of A. thaliana (Aukerman et al. 1997; Alonso-Blanco et al. 1998; El-Assal et al. 2001; Werner et al. 2005b; Balasubramanian et al. 2006a; Wang et al. 2007). Finally, there are many genotype-by-environment interactions that dramatically affect the contribution of a specific locus to the overall phenotype.The study of natural variation in A. thaliana has been greatly facilitated through the use of recombinant inbred line (RIL) populations (Koornneef et al. 2004). We have recently established two advanced intercross (AI)-RIL sets, in which the genetic map is greatly expanded, allowing for high-resolution QTL mapping (Balasubramanian et al. 2009). Here we use one of the new AI-RIL populations along with an independent F2 population to identify the molecular basis of a light and temperature-sensitive flowering time QTL that mapped to the promoter of the FT gene. We show that FT is likely the causal gene for variation in light and temperature-sensitive flowering. Our results, in combination with those from other species, suggest that cis-regulatory variation rather than structural variation at FT contributes to phenotypic variation in natural populations.  相似文献   

10.
《PloS one》2012,7(9)

Rationale

Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies.

Objectives

To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations.

Methods

The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10−8) and three variants reported as suggestive (P<5×10−7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever.

Main Results

We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10−9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P Stage1+Stage2 = 1.1x10−9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P Stage1+Stage2 = 1.1x10−8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status.

Conclusions

Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.  相似文献   

11.
康菊清  张岱鹏 《植物学报》2016,51(5):577-585
活性氧(ROS)是植物光合作用和呼吸作用的副产物, 环境胁迫可加速植物体内ROS的产生, 造成植物细胞膜的过氧化, 同时给光反应中心II带来光伤害。RFOs是植物体内的1类寡聚糖家族, 其对环境胁迫的响应很可能与清除过剩的ROS相关。前期的研究显示, 由于中国长江流域野生拟南芥(Arabidopsis thaliana)种群中CBF3基因的变异, 种群的冰冻耐受性和体内RFOs含量的积累普遍低于Col生态型。研究表明, 长江流域种群中ROS代谢通路在低温处理后的表达与Col生态型相比发生了明显的分化, 并且植物体内ROS的浓度增高; 而将Col生态型中能正常响应环境冷信号的CBF3基因转入长江流域种群后, 转基因植株的冰冻耐受性得到显著提高, 体内RFOs积累亦增加, 而ROS浓度显著降低。这些结果说明, 低温条件下CBF3很可能通过直接调控植物体内RFOs的生物积累来参与调控下游过剩ROS的清除过程。中国长江流域野生拟南芥种群低温条件下体内ROS浓度的升高, 很可能是由于种群中CBF3基因发生了自然变异从而丧失了冷响应能力造成的。  相似文献   

12.
13.
Drought tolerance is a comprehensive quantitative trait that is being understood further at the molecular genetic level. Abscisic acid (ABA) is the main drought-induced hormone that regulates the expression of many genes related to drought responses. 9-cis-epoxycarotenoid dioxygenase (NCED3) is thought to be a key enzyme in ABA biosynthesis. In this paper, we measured the ABA content increase under drought stress, and sequenced and compared the sequence of AtNCED3 among 22 Arabidopsis thaliana accessions. The results showed that the fold of ABA content increase under drought stress was highly variable among these accessions. High density single nucleotide polymorphism (SNP) and insertion/deletion (indel) were found in the AtNCED3 region, on average one SNP per 87.4 bp and one indel per 502 bp. Nucleotide diversity was significantly lower in the coding region than that in non-coding regions. The results of an association study with ANOVA analysis suggested that the 274th site (P←→S) and the 327th site (P←→R) amino acid variations might be the cause of ABA content increase of 163av accession under drought stress.  相似文献   

14.
Drought tolerance is a comprehensive quantitative trait that is being understood further at the molecular genetic level. Abscisic acid (ABA) is the main drought-induced hormone that regulates the expression of many genes related to drought responses. 9-cis-epoxycarotenoid dioxygenase (NCED3) is thought to be a key enzyme in ABA biosynthesis. In this paper, we measured the ABA content increase under drought stress, and sequenced and compared the sequence of AtNCED3 among 22 Arabidopsis thaliana accessions. The results showed that the fold of ABA content increase under drought stress was highly variable among these accessions. High density single nucleotide polymorphism (SNP) and insertion/deletion (indel) were found in the AtNCED3 region, on average one SNP per 87.4 bp and one indel per 502 bp. Nucleotide diversity was significantly lower in the coding region than that in non-coding regions. The results of an association study with ANOVA analysis suggested that the 274th site (P←→S) and the 327th site (P←→R) amino acid variations might be the cause of ABA content increase of 163av accession under drought stress.  相似文献   

15.
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.  相似文献   

16.
Capsella rubella is an inbreeding annual forb closely related to Arabidopsis thaliana, a model species widely used for studying natural variation in adaptive traits such as flowering time. Although mutations in dozens of genes can affect flowering of A. thaliana in the laboratory, only a handful of such genes vary in natural populations. Chief among these are FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). Common and rare FRI mutations along with rare FLC mutations explain a large fraction of flowering-time variation in A. thaliana. Here we document flowering time under different conditions in 20 C. rubella accessions from across the species’ range. Similar to A. thaliana, vernalization, long photoperiods and elevated ambient temperature generally promote flowering. In this collection of C. rubella accessions, we did not find any obvious loss-of-function FRI alleles. Using mapping-by-sequencing with two strains that have contrasting flowering behaviors, we identified a splice-site mutation in FLC as the likely cause of early flowering in accession 1408. However, other similarly early C. rubella accessions did not share this mutation. We conclude that the genetic basis of flowering-time variation in C. rubella is complex, despite this very young species having undergone an extreme genetic bottleneck when it split from C. grandiflora a few tens of thousands of years ago.  相似文献   

17.

Background

Otitis media (OM) is a common childhood disease characterised by middle ear inflammation and effusion. Susceptibility to recurrent acute OM (rAOM; ≥3 episodes of AOM in 6 months) and chronic OM with effusion (COME; MEE ≥3 months) is 40–70% heritable. Few underlying genes have been identified to date, and no genome-wide association study (GWAS) of OM has been reported.

Methods and Findings

Data for 2,524,817 single nucleotide polymorphisms (SNPs; 535,544 quality-controlled SNPs genotyped by Illumina 660W-Quad; 1,989,273 by imputation) were analysed for association with OM in 416 cases and 1,075 controls from the Western Australian Pregnancy Cohort (Raine) Study. Logistic regression analyses under an additive model undertaken in GenABEL/ProbABEL adjusting for population substructure using principal components identified SNPs at CAPN14 (rs6755194: OR = 1.90; 95%CI 1.47–2.45; Padj-PCA = 8.3×10−7) on chromosome 2p23.1 as the top hit, with independent effects (rs1862981: OR = 1.60; 95%CI 1.29–1.99; Padj-PCA = 2.2×10−5) observed at the adjacent GALNT14 gene. In a gene-based analysis in VEGAS, BPIFA3 (PGene = 2×10−5) and BPIFA1 (PGene = 1.07×10−4) in the BPIFA gene cluster on chromosome 20q11.21 were the top hits. In all, 32 genomic regions show evidence of association (Padj-PCA<10−5) in this GWAS, with pathway analysis showing a connection between top candidates and the TGFβ pathway. However, top and tag-SNP analysis for seven selected candidate genes in this pathway did not replicate in 645 families (793 affected individuals) from the Western Australian Family Study of Otitis Media (WAFSOM). Lack of replication may be explained by sample size, difference in OM disease severity between primary and replication cohorts or due to type I error in the primary GWAS.

Conclusions

This first discovery GWAS for an OM phenotype has identified CAPN14 and GALNT14 on chromosome 2p23.1 and the BPIFA gene cluster on chromosome 20q11.21 as novel candidate genes which warrant further analysis in cohorts matched more precisely for clinical phenotypes.  相似文献   

18.
运用MSAP技术分析了拟南芥(Arabidopsis thaliana)幼苗超低温保存后DNA甲基化的遗传变异情况。结果表明,在扩增的662条带中,对照和2个处理及其第2代间完全一致的带型有598条:发生变化的带型有64条,其中能遗传给第2代的有48条,占变异条带的75%。与对照相比,经超低温保存的样品新产生的甲基化位点有14个,而去甲基化的位点有22个。经过处理但未冷冻的与冷冻处理组之间带型一致的有624条,差异条带有38条,占5.7%,而对照与未冷冻处理组的差异率是7.45%,对照与冷冻处理组之间的差异率是6。63%。可见,拟南芥在超低温保存中,无论是经液氮冷冻还是未经冷冻处理,对材料的甲基化状态均有影响,而这种甲基化变化大部分是可以遗传的。  相似文献   

19.
拟南芥幼苗超低温保存后DNA甲基化的遗传变异   总被引:6,自引:0,他引:6  
何艳霞  王子成 《植物学报》2009,44(3):317-322
运用MSAP技术分析了拟南芥(Arabidopsis thaliana)幼苗超低温保存后DNA甲基化的遗传变异情况。结果表明, 在扩增的662条带中, 对照和2个处理及其第2代间完全一致的带型有598条; 发生变化的带型有64条, 其中能遗传给第2代的有48条, 占变异条带的75%。与对照相比, 经超低温保存的样品新产生的甲基化位点有14个, 而去甲基化的位点有22个。经过处理但未冷冻的与冷冻处理组之间带型一致的有624条, 差异条带有38条, 占5.7%, 而对照与未冷冻处理组的差异率是7.45%, 对照与冷冻处理组之间的差异率是6.63%。可见, 拟南芥在超低温保存中, 无论是经液氮冷冻还是未经冷冻处理, 对材料的甲基化状态均有影响, 而这种甲基化变化大部分是可以遗传的。  相似文献   

20.
Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号