首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management increases genetic diversity of honey bees via admixture   总被引:1,自引:0,他引:1  
Harpur BA  Minaei S  Kent CF  Zayed A 《Molecular ecology》2012,21(18):4414-4421
The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.  相似文献   

2.
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.  相似文献   

3.
4.
Honey bees are the most important managed pollinators as they provide key ecosystem services for crop production worldwide. Recent losses of honey bee colonies in North America and Europe have demonstrated a need to develop strategies to improve their health and conserve their populations. Previously, we showed that feral honey bees—colonies that live in the wild without human assistance—exhibit higher levels of immunocompetence than managed colonies in North Carolina (USA). In a first attempt to investigate the underlying mechanisms of this difference in immune response, here we characterize the genetic composition of feral and managed honey bees using microsatellite markers. Our results reveal significant but small genetic differentiation between feral and managed honey bee colonies (?CT = 0.047, P?=?0.03) indicating admixture between these two groups. Higher genetic diversity was correlated with higher immune response in feral (P MANOVA = 0.011) but not managed bees, despite the fact that the latter group showed significantly higher average genetic diversity (P ANCOVA < 0.001). These findings suggest that genetic diversity is positively associated with immunocompetence in feral honey bee colonies, and that the benefits of genetic diversity are obscured in managed bees, perhaps as a result of artificial selection. We hypothesize that high genetic variability provides the raw material upon which natural selection acts and generates adaptive genotypes in unmanaged populations. Feral populations could be useful sources of genetic variation to use in breeding programs that aim to improve honey bee health.  相似文献   

5.
This study examined the use of honey bees, Apis mellifera L., to supplement bumble bee, Bombus spp., pollination in commercial tomato, Lycopersicon esculentum Miller, greenhouses in Western Canada. Honey bee colonies were brought into greenhouses already containing bumble bees and left for 1 wk to acclimatize. The following week, counts of honey and bumble bees foraging and flying throughout the greenhouse were conducted three times per day, and tomato flowers open during honey bee pollination were marked for later fruit harvest. The same counts and flower-marking also were done before and after the presence of honey bees to determine the background level of bumble bee pollination. Overall, tomato size was not affected by the addition of honey bees, but in one greenhouse significantly larger tomatoes were produced with honey bees present compared with bumble bees alone. In that greenhouse, honey bee foraging was greater than in the other greenhouses. Honey bees generally foraged within 100 m of their colony in all greenhouses. Our study invites further research to examine the use of honey bees with reduced levels of bumble bees, or as sole pollinators of greenhouse tomatoes. We also make specific recommendations for how honey bees can best be managed in greenhouses.  相似文献   

6.
A study of sunflower, Helianthus annuus L., pollen collection by Africanized and European honey bees, Apis mellifera L., was conducted in a hybrid seed production field in Argentina. Africanized honey bees collected significantly larger proportions of sunflower pollen than did European honey bees. The result suggests that Africanized bees would be more efficient for commercial sunflower seed production.  相似文献   

7.
Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline.  相似文献   

8.
This study demonstrated (1) that honey bees, Apis mellifera L, can express a high level of resistance to Varroa destructor Anderson & Trueman when bees were selected for only one resistant trait (suppression of mite reproduction); and (2) that a significant level of mite-resistance was retained when these queens were free-mated with unselected drones. The test compared the growth of mite populations in colonies of bees that each received one of the following queens: (1) resistant--queens selected for suppression of mite reproduction and artificially inseminated in Baton Rouge with drones from similarly selected stocks; (2) resistant x control--resistant queens, as above, produced and free-mated to unselected drones by one of four commercial queen producers; and (3) control--commercial queens chosen by the same four queen producers and free-mated as above. All colonies started the test with approximately 0.9 kg of bees that were naturally infested with approximately 650 mites. Colonies with resistant x control queens ended the 115-d test period with significantly fewer mites than did colonies with control queens. This suggests that beekeepers can derive immediate benefit from mite-resistant queens that have been free-mated to unselected drones. Moreover, the production and distribution of these free-mated queens from many commercial sources may be an effective way to insert beneficial genes into our commercial population of honey bees without losing the genetic diversity and the useful beekeeping characteristics of this population.  相似文献   

9.
Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.  相似文献   

10.
Two generations of honey bees, Apis mellifera L., selected for resistance to tracheal mites, Acarapis woodi (Rennie), were produced from a foundation stock. The mite resistant lines had significantly low mite abundances and prevalences in each selected generation. The high mite-resistant lines of the first selected generation showed resistance equal to that of bees that had undergone natural selection from tracheal mite infestations for 3 yr in New York. Additionally, the high mite-resistant lines of the second selected generation and Buckfast bees had significantly lower mite abundances and prevalences than honey bees from control colonies which had never been exposed to tracheal mite infestation in Ontario. These results corroborate studies that have shown that honey bees possess genetic components for tracheal mite resistance that can be readily enhanced in a breeding program. The two methods used for evaluating relative resistance of honey bees to tracheal mites, a short-term bioassay and evaluation in field colonies, were positively correlated (rs = 0.64, P < 0.001).  相似文献   

11.
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.  相似文献   

12.
Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.  相似文献   

13.
Honey bee pathology: current threats to honey bees and beekeeping   总被引:1,自引:0,他引:1  
Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon “decline of honey bees” is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.  相似文献   

14.
Accurate thermoregulation in honey bees is crucial for colony survival. Multiple factors influence how colonies manage in-hive temperature, including genetic diversity. We explored the influence of genetic diversity on thermoregulatory behavior under three conditions: natural foraging, supplemental feeding, and exposure to the fungal pathogen shown to induce a social fever in honey bees. Our data suggest that (1) the degree of genetic diversity expected under normal conditions is not predictive of thermoregulatory stability, (2) the social fever response of honey bees is not a simple stimulus–response mechanism but appears to be influenced by ambient temperature conditions, and (3) a temperature-based circadian rhythm emerges under high nectar flow conditions. Taken together, these data suggest that a richer, context-dependent thermoregulatory system exists in honey bees than previously understood.  相似文献   

15.
Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.  相似文献   

16.
Capitol Reef National Park in central Utah, USA surrounds 22 managed fruit orchards started over a century ago by Mormon pioneers. Honey bees are imported for pollination, although the area in which the Park is embedded has over 700 species of native bees, many of which are potential orchard pollinators. We studied the visitation of native bees to apple, pear, apricot, and sweet cherry over 2 years. Thirty species of bees visited the flowers but, except for pear flowers, most were uncommon compared to honey bees. Evidence that honey bees prevented native bees from foraging on orchard crop flowers was equivocal: generally, honey bee and native bee visitation rates to the flowers were not negatively correlated, nor were native bee visitation rates positively correlated with distance of orchards from honey bee hives. Conversely, competition was tentatively suggested by much larger numbers of honey bees than natives on the flowers of apples, apricots and cherry; and by the large increase of native bees on pears, where honey bee numbers were low. At least one-third of the native bee species visiting the flowers are potential pollinators, including cavity-nesting species such as Osmia lignaria propinqua, currently managed for small orchard pollination in the US, plus several fossorial species, including one rosaceous flower specialist (Andrena milwaukiensis). We suggest that gradual withdrawal of honey bees from the Park would help conserve native bee populations without decreasing orchard crop productivity, and would serve as a demonstration of the commercial value of native pollinators.  相似文献   

17.
Population genetics of commercial and feral honey bees in Western Australia   总被引:1,自引:0,他引:1  
Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.  相似文献   

18.
Africanized honey bees (Apis mellifera, Hymenoptera: Apidae) in Brazil are tolerant of infestations with the exotic ectoparasitic mite, Varroa destructor (Mesostigmata: Varroidae), while the European honey bees used in apiculture throughout most of the world are severely affected. Africanized honey bees are normally kept in hives with both naturally built small width brood cells and with brood cells made from European-sized foundation, yet we know that comb cell size has an effect on varroa reproductive behavior. Three types (sizes) of brood combs were placed in each of six Africanized honey bee colonies: new (self-built) Africanized comb, new Italian comb (that the bees made from Italian-sized commercial foundation), and new Carniolan comb (built naturally by Carniolan bees). About 100 cells of each type were analyzed in each colony. The Africanized comb cells were significantly smaller in (inner) width (4.84 mm) than the European-sized comb cells (5.16 and 5.27 mm for Italian and Carniolan cells, respectively). The brood cell infestation rates (percentage cells infested) were significantly higher in the Carniolan-sized comb cells (19.3%) than in the Italian and Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of invading adult female mites per 100 brood cells (24.4) than did the Italian-sized cells (17.7) and the natural-sized Africanized worker brood cells (15.6). European-sized worker brood cells were always more infested than the Africanized worker brood cells in the same colony. There was a highly significant correlation (P<0.01) between cell width and the rate of infestation with varroa in four of the six colonies. The small width comb cells produced by Africanized honey bees may have a role in the ability of these bees to tolerate infestations by Varroa destructor, furthermore it appears that natural-sized comb cells are superior to over-sized comb cells for disease resistance.  相似文献   

19.
20.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号