首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:了解帕金森病(PD)模型大鼠在快动眼睡眠状态下皮层脑电和基底节场电位的异常变化。方法:用6-羟基多巴胺(6-OHDA)脑内两点注射法建立PD大鼠模型,并经阿扑吗啡注射诱发旋转对模型进行评价。通过多导宏电极在体电生理记录技术结合视频录像,对正常大鼠和6-OHDA大鼠PD模型进行苍白球场电位和皮层M1、M2区脑电的多部位24小时同时记录。功率谱分析和相干分析用于揭示快动眼睡眠状态下各记录位点信号的频率成分以及不N记录位点神经元集群之间的变化。结果:与正常大鼠相比,6-OHDA帕金森病模型大鼠在REM期间的皮层脑电在臼和y频段上都有变化:初级运动皮质M1区的θ频段成分消失,辅助运动区M2的θ频段成分略有增加,患侧苍白球的θ频段成分增大显著;M1区的γ频段成分增大,而γ频段成分在苍白球基本没有变化。结论:6-OHDA对中脑多巴胺能神经元的损害可造成大鼠双侧皮层M1区θ节律的消失和γ节律的增强,以及对侧M1-M2区之间在γ节律上的同步被显著增强,而γ节律在苍白球没有变化。这些异常电活动可能是由于VTA受损引起从而与帕金森病的快动眼睡眠行为障碍有关。  相似文献   

2.
Ray S  Maunsell JH 《PLoS biology》2011,9(4):e1000610
During cognitive tasks electrical activity in the brain shows changes in power in specific frequency ranges, such as the alpha (8-12 Hz) or gamma (30-80 Hz) bands, as well as in a broad range above ~80 Hz, called the high-gamma band. The role or significance of this broadband high-gamma activity is unclear. One hypothesis states that high-gamma oscillations serve just like gamma oscillations, operating at a higher frequency and consequently at a faster timescale. Another hypothesis states that high-gamma power is related to spiking activity. Because gamma power and spiking activity tend to co-vary during most stimulus manipulations (such as contrast modulations) or cognitive tasks (such as attentional modulation), it is difficult to dissociate these two hypotheses. We studied the relationship between high-gamma power, gamma rhythm, and spiking activity in the primary visual cortex (V1) of awake monkeys while varying the stimulus size, which increased the gamma power but decreased the firing rate, permitting a dissociation. We found that gamma power became anti-correlated with the high-gamma power, suggesting that the two phenomena are distinct and have different origins. On the other hand, high-gamma power remained tightly correlated with spiking activity under a wide range of stimulus manipulations. We studied this relationship using a signal processing technique called Matching Pursuit and found that action potentials are associated with sharp transients in the LFP with broadband power, which is visible at frequencies as low as ~50 Hz. These results distinguish broadband high-gamma activity from gamma rhythms as an easily obtained and reliable electrophysiological index of neuronal firing near the microelectrode. Further, they highlight the importance of making a careful dissociation between gamma rhythms and spike-related transients that could be incorrectly decomposed as rhythms using traditional signal processing methods.  相似文献   

3.
Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks.  相似文献   

4.
Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement [1], [2], [3], [4], [5], [6] and [7]. This and other correlative evidence suggests that beta activity might promote tonic contraction, while impairing motor processing related to new movements [3], [8] and [9]. Hence, bursts of beta activity in the cortex are associated with a strengthening of the motor effects of sensory feedback during tonic contraction and with reductions in the velocity of voluntary movements [9], [10] and [11]. Moreover, beta activity is increased when movement has to be resisted or voluntarily suppressed [7], [12] and [13]. Here we use imperceptible transcranial alternating-current stimulation to entrain cortical activity at 20 Hz in healthy subjects and show that this slows voluntary movement. The present findings are the first direct evidence of causality between any physiological oscillatory brain activity and concurrent motor behavior in the healthy human and help explain how the exaggerated beta activity found in Parkinson's disease can lead to motor slowing in this illness [14].  相似文献   

5.
Neural Coding of Finger and Wrist Movements   总被引:2,自引:0,他引:2  
Previous work (Schieber and Hibbard, 1993) has shown that single motor cortical neurons do not discharge specifically for a particular flexion-extension finger movement but instead are active with movements of different fingers. In addition, neuronal populations active with movements of different fingers overlap extensively in their spatial locations in the motor cortex. These data suggested that control of any finger movement utilizes a distributed population of neurons. In this study we applied the neuronal population vector analysis (Georgopoulos et al., 1983) to these same data to determine (1) whether single cells are tuned in an abstract, three-dimensional (3D) instructed finger and wrist movement space with hand-like geometry and (2) whether the neuronal population encodes specific finger movements. We found that the activity of 132/176 (75%) motor cortical neurons related to finger movements was indeed tuned in this space. Moreover, the population vector computed in this space predicted well the instructed finger movement. Thus, although single neurons may be related to several disparate finger movements, and neurons related to different finger movements are intermingled throughout the hand area of the motor cortex, the neuronal population activity does specify particular finger movements.  相似文献   

6.
Gamma rhythms in many brain regions, including the primary visual cortex (V1), are thought to play a role in information processing. Here, we report a surprising finding of 3 narrowband gamma rhythms in V1 that processed distinct spatial frequency (SF) signals and had different neural origins. The low gamma (LG; 25 to 40 Hz) rhythm was generated at the V1 superficial layer and preferred a higher SF compared with spike activity, whereas both the medium gamma (MG; 40 to 65 Hz), generated at the cortical level, and the high gamma HG; (65 to 85 Hz), originated precortically, preferred lower SF information. Furthermore, compared with the rates of spike activity, the powers of the 3 gammas had better performance in discriminating the edge and surface of simple objects. These findings suggest that gamma rhythms reflect the neural dynamics of neural circuitries that process different SF information in the visual system, which may be crucial for multiplexing SF information and synchronizing different features of an object.

Gamma rhythms in many brain regions are thought to play a role in information processing. This study reports the surprising coexistence of three narrow-band gamma rhythms in visual cortex with distinct coding properties for visual features and distinct neural origins.  相似文献   

7.
Human brain functions are heavily contingent on neural interactions both at the single neuron and the neural population or system level. Accumulating evidence from neurophysiological studies strongly suggests that coupling of oscillatory neural activity provides an important mechanism to establish neural interactions. With the availability of whole-head magnetoencephalography (MEG) macroscopic oscillatory activity can be measured non-invasively from the human brain with high temporal and spatial resolution. To localise, quantify and map oscillatory activity and interactions onto individual brain anatomy we have developed the 'dynamic imaging of coherent sources' (DICS) method which allows to identify and analyse cerebral oscillatory networks from MEG recordings. Using this approach we have characterized physiological and pathological oscillatory networks in the human sensorimotor system. Coherent 8 Hz oscillations emerge from a cerebello-thalamo-premotor-motor cortical network and exert an 8 Hz oscillatory drive on the spinal motor neurons which can be observed as a physiological tremulousness of the movement termed movement discontinuities. This network represents the neurophysiological substrate of a discrete mode of motor control. In parkinsonian resting tremor we have identified an extensive cerebral network consisting of primary motor and lateral premotor cortex, supplementary motor cortex, thalamus/basal ganglia, posterior parietal cortex and secondary somatosensory cortex, which are entrained in the tremor or twice the tremor rhythm. This low frequency entrapment of motor areas likely plays an important role in the pathophysiology of parkinsonian motor symptoms. Finally, studies on patients with postural tremor in hepatic encephalopathy revealed that this type of tremor results from a pathologically slow thalamocortical and cortico-muscular coupling during isometric hold tasks. In conclusion, the analysis of oscillatory cerebral networks provides new insights into physiological mechanisms of motor control and pathophysiological mechanisms of tremor disorders.  相似文献   

8.
Oscillatory patterns of activity in various frequency ranges are ubiquitously expressed in cortical circuits. While recent studies in humans emphasized rhythmic modulations of neuronal oscillations ("second-order" rhythms), their potential involvement in information coding remains an open question. Here, we show that a rhythmic (~0.7?Hz) modulation of hippocampal theta power, unraveled by second-order spectral analysis, supports encoding of spatial and behavioral information. The phase preference of neuronal discharge within this slow rhythm significantly increases the amount of information carried by action potentials in various motor/cognitive behaviors by (1) distinguishing between the spikes fired within versus outside the place field of hippocampal place cells, (2) disambiguating place firing of neurons having multiple place fields, and (3) predicting between alternative future spatial trajectories. This finding demonstrates the relevance of second-order spectral components of brain rhythms for decoding neuronal information.  相似文献   

9.
The ECoG pattern of self-sustained after-discharges (SSADs) evoked by rhythmic electrical stimulation of the cerebral cortex is far from uniform. In acute experiments on male rats the authors studied the significance of the frequency, intensity and length of stimulation for the character of the resultant SSAD. In the first group (11 rats), a stimulation frequency of 8 Hz was used; the stimulation series, which lasted 10 and 20 s, always led to the formation of a SSAD composed of spike-and-wave rhythm right from the outset. Shortening the time of stimulation markedly reduced its effectiveness. In the second group (10 animals), stimulation with 50 Hz frequency often evoked a complex SSAD starting with desynchronization, which was followed by fast spike activity of increasing amplitude and only later by spike-and-wave rhythm or by polyspike-and-wave rhythm. Towards the end, serrated waves--i.e. graphoelements typical of SSADs evoked by electrical stimulation of limbic structures--often appeared in the SSAD. A higher stimulation intensity increased the incidence of this complex SSAD. In this group a minimum duration of stimulation was also essential (series of less than 2 s were not reliably effective). When this second type of SSAD ended, depression of ECoG activity was followed in 27% of the cases by a spontaneous recurrent seizure (RS). The ECoG character of these RS can be very variable. The two types of seizures evoked by slow and fast stimulation differ from each other not only in respect of their ECoG pattern (where the difference is probably due to more pronounced propagation to subcortical structures after faster stimulation), but also as regards the presumed mechanism of their onset.  相似文献   

10.
Synchronization of neural oscillations is thought to facilitate communication in the brain. Neurodegenerative pathologies such as Parkinson’s disease (PD) can result in synaptic reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural communication. Treatments for PD aim to restore network function via pharmacological means such as dopamine replacement, or by suppressing pathological oscillations with deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond a simple “reversible lesion” effect to augment network communication. Specifically, we examined the modulation of beta band (14–30 Hz) activity, a known biomarker of motor deficits and potential control signal for stimulation in Parkinson’s. To do this we setup a neural mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit with parameters that were constrained to yield spectral features comparable to those in experimental Parkinsonism. We modulated the connectivity of two major pathways known to be disrupted in PD and constructed statistical summaries of the spectra and functional connectivity of the resulting spontaneous activity. These were then used to assess the network-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta synchrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has the capacity to recover network states, with stimulation phase inducing activity with distinct spectral and spatial properties. These results provide a theoretical basis for the design of the next-generation brain stimulators that aim to restore neural communication in disease.  相似文献   

11.
When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, ‘mirroring’ or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer''s primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex–muscle coherence at 16–20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person''s actions, thereby withholding unintentional imitation.  相似文献   

12.
Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period) and beta2 ( approximately 40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.  相似文献   

13.
Gamma rhythms (30-80 Hz) are a near-ubiquitous feature of neuronal population activity in mammalian cortices. Their dynamic properties permit the synchronization of neuronal responses to sensory input within spatially distributed networks, transient formation of local neuronal "cell assemblies," and coherent response patterns essential for intercortical regional communication. Each of these phenomena form part of a working hypothesis for cognitive function in cortex. All forms of physiological gamma rhythm are inhibition based, being characterized by rhythmic trains of inhibitory postsynaptic potentials in populations of principal neurons. It is these repeating periods of relative enhancement and attenuation of the responsivity of major cell groups in cortex that provides a temporal structure shared across many millions of neurons. However, when considering the origins of these repeating trains of inhibitory events considerable divergence is seen depending on cortical region studied and mode of activation of gamma rhythm generating networks. Here, we review the evidence for involvement of multiple subtypes of interneuron and focus on different modes of activation of these cells. We conclude that most massively parallel brain regions have different mechanisms of gamma rhythm generation, that different mechanisms have distinct functional correlates, and that switching between different local modes of gamma generation may be an effective way to direct cortical communication streams. Finally, we suggest that developmental disruption of the endophenotype for certain subsets of gamma-generating interneuron may underlie cognitive deficit in psychiatric illness.  相似文献   

14.
Voluntary movement is accompanied by changes in the degree to which neurons in the brain synchronize their activity within discrete frequency ranges. Two patterns of movement-related oscillatory activity stand out in human cortical motor areas. Activity in the beta frequency (15-30 Hz) band is prominent during tonic contractions but is attenuated prior to and during voluntary movement. Without such attenuation, movement may be slowed, leading to the suggestion that beta activity promotes postural and tonic contraction, possibly at a cost to the generation of new movements. In contrast, activity in the gamma (60-90 Hz) band increases during movement. The direction of change suggests that gamma activity might facilitate motor processing. In correspondence with this, increased frontal gamma activity is related with reduced reaction times. Yet the possibility remains that these functional correlations reflect an epiphenomenal rather than causal relationship. Here we provide strong evidence that oscillatory activities at the cortical level are mechanistically involved in determining motor behavior and can even improve performance. By driving cortical oscillations using noninvasive electrical stimulation, we show opposing effects at beta and gamma frequencies and interactions with motor task that reveal the potential quantitative importance of oscillations in motor behavior.  相似文献   

15.
One of the most widely studied circadian rhythms in invertebrates is that of light responsiveness whose underlying mechanisms seem to involve different groups of oscillators which act as pacemakers. Although, in crayfish, there are clear circadian rhythms in the electroretinogram (ERG) amplitude, the precise location of the pacemaker system driving this rhythm is uncertain. Some data suggest that the circadian pacemaker could be located in a group of neurosecretory cells of the supraesophageal ganglion (the cerebroid ganglion or brain) and that the sinus gland plays a determinant role in the generation and expression of this rhythm through periodic release of pigment-dispersing hormone (PDH). The aim of this work is to examine the role of the brain in the expression of the ERG circadian activity. The hypothesis we test is that the electrical activity at the brain level has a circadian behavior in the firing pattern of spontaneous multiunit activity (MUA) and in visual evoked potentials (VEPs). The results indicate that there are robust circadian rhythms in both MUA, recorded from several regions of the brain, and in the averaged VEPs recorded from the protocerebrum area. These rhythms are 180° out of phase to one another. The rhythm of VEPs showed a main peak at midnight which was in close phase relationship with the ERG amplitude rhythm.  相似文献   

16.
Beta oscillations in cortical-basal ganglia (BG) circuits have been implicated in normal movement suppression and motor impairment in Parkinson's disease. To dissect the functional correlates of these rhythms we compared neural activity during four distinct variants of a cued choice task in rats. Brief beta (~20?Hz) oscillations occurred simultaneously throughout the cortical-BG network, both spontaneously and at precise moments of task performance. Beta phase was rapidly reset in response to salient cues, yet increases in beta power were not rigidly linked to cues, movements, or movement suppression. Rather, beta power was enhanced after cues were used to determine motor output. We suggest that beta oscillations reflect a postdecision stabilized state of cortical-BG networks, which normally reduces interference from alternative potential actions. The abnormally strong beta seen in Parkinson's Disease may reflect overstabilization of these networks, producing pathological persistence of the current motor state.  相似文献   

17.
A hidden excitation focus (dominanta focus) was produced in the rabbit's CNS by threshold electrical stimulation of the left forelimb with the frequency of 0.5 Hz. As a rule, after the formation of the focus, pairs of neurons with prevailing two-second rhythm in their correlated activity were revealed both in the left and right sensorimotor cortices (with equal probabilities 29.3 and 32.4%, respectively). After "animal hypnosis" induction, the total percent of neuronal pairs with the prevalent dominanta-induced rhythm decreased significantly only in the right hemisphere (21%). After the termination of the "animal hypnosis" state, percent of neuronal pairs in the right cortex with prevailing two-second rhythm significantly increasead if the neurons in a pair were neighboring and decreased if they were remote from each other. Similar changes after the hypnotization were not found in the left cortex. Analysis of correlated activity of neuronal pairs with regard to amplitude characteristics showed that for both the right and left hemispheres, the prevalence of the two-second rhythm was more frequently observed in crosscorrelation histograms constructed regarding discharges of neurons with the lowest spike amplitude (in the right hemisphere) or the lowest and mean amplitudes (in the left hemisphere) selected from multiunit records.  相似文献   

18.
One of the most exciting and compelling areas of research and development is building brain machine interfaces (BMIs) for controlling prosthetic limbs. Prosthetic limb technology is advancing rapidly, and the modular prosthetic limb (MPL) of the Johns Hopkins University/ Applied Physics Laboratory (JHU/APL) permits actuation with 17 degrees of freedom in 26 articulating joints. There are many signals from the brain that can be leveraged, including the spiking rates of neurons in the cortex, electrocorticographic (ECoG) signals from the surface of the cortex, and electroencephalographic (EEG) signals from the scalp. Unlike microelectrodes that record spikes, ECoG does not penetrate the cortex and has a higher spatial specificity, signal-to-noise ratio, and bandwidth than EEG signals. We have implemented an ECoG-based system for controlling the MPL in the Johns Hopkins Hospital Epilepsy Monitoring Unit, where patients are implanted with ECoG electrode grids for clinical seizure mapping and asked to perform various recorded finger or grasp movements. We have shown that low-frequency local motor potentials (LMPs) and ECoG power in the high gamma frequency (70,150 Hz) range correlate well with grasping parameters, and they stand out as good candidate features for closed-loop control of the MPL.  相似文献   

19.
Brain-machine interfaces (BMIs) can be characterized by the technique used to measure brain activity and by the way different brain signals are translated into commands that control an effector. We give an overview of different approaches and focus on a particular BMI approach: the movement of an artificial effector (e.g. arm prosthesis to the right) by those motor cortical signals that control the equivalent movement of a corresponding body part (e.g. arm movement to the right). This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single-units. Here, we review recent findings showing that analog neuronal population signals, ranging from intracortical local field potentials over epicortical ECoG to non-invasive EEG and MEG, can also be used to decode movement direction and continuous movement trajectories. Therefore, these signals might provide additional or alternative control for this BMI approach, with possible advantages due to reduced invasiveness.  相似文献   

20.
Beta electrocorticographic rhythms (30-45 Hz) develop during focused immobile attention within two distinct foci in cats. A multiple electrode exploration was performed, followed by post-mortem histological analysis, to determine the precise localization of these foci. Electrode tips recording beta rhythms in the waking attentive cat were located: in motor areas (Brodmann's areas 4 and 6), in a band extending from the postcruciate cortex to the walls of the presylvian sulcus, crossing the frontal pole (anterior beta focus); in the posterior parietal associative area 5a, along the divisions of the ansate sulcus (posterior beta focus). The two foci are separated by somatic areas 3, 2 and 1, where beta rhythms were never recorded. The location of the posterior focus may suggest that area 5 is, in the cat as it is in the monkey, involved in motor control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号