首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.  相似文献   

2.
The migration of different cell types, such as leucocytes and tumour cells, involves cellular strategies to overcome the physical resistance of three-dimensional tissue networks, including proteolytic degradation of extracellular matrix (ECM) components. High-resolution live-cell imaging techniques have recently provided structural and biochemical insight into the differential use of matrix-degrading enzymes in the migration processes of different cell types within the three-dimensional ECM. Proteolytic migration is achieved by slow-moving cells, such as fibroblasts and mesenchymally moving tumour cells, by engaging matrix metalloproteinases, cathepsins and serine proteases at the cell surface in a focalized manner ('pericellular proteolysis'), while adhesion and migratory traction are provided by integrins. Pericellular breakdown of ECM components generates localized matrix defects and remodelling along migration tracks. In contrast with tumour cells, constitutive non-proteolytic migration is used by rapidly moving T lymphocytes. This migration type does not generate proteolytic matrix remodelling, but rather depends on shape change to allow cells to glide and squeeze through gaps and trails present in connective tissues. In addition, constitutive proteolytic migration can be converted into non-proteolytic movement by protease inhibitors. After the simultaneous inhibition of matrix metalloproteinases, serine/threonine proteases and cysteine proteases in tumour cells undergoing proteolysis-dependent movement, a fundamental adaptation towards amoeboid movement is able to sustain non-proteolytic migration in these tumour cells (the mesenchymal-amoeboid transition). Instead of using proteases for matrix degradation, the tumour cells use leucoyte-like strategies of shape change and squeezing through matrix gaps along tissue scaffolds. The diversity of protease function in cell migration by different cell types highlights response diversity and molecular adaptation of cell migration upon pharmacotherapeutic protease inhibitor treatment.  相似文献   

3.
Proteases are important for multiple processes during malignant progression, including tumor angiogenesis, invasion and metastasis. Recent evidence reveals that tumor-promoting proteases function as part of an extensive multidirectional network of proteolytic interactions, in contrast to the unidirectional caspase cascade. These networks involve different constituents of the tumor microenvironment and key proteases, such as cathepsin B, urokinase-type plasminogen activator and several matrix metalloproteinases, occupy central nodes for amplifying proteolytic signals passing through the network. The proteolytic network interacts with other important signaling pathways in tumor biology, involving chemokines, cytokines, and kinases. Viewing these proteolytic interactions as a system of activating and inhibiting reactions provides insight into tumor biology and reveals relevant pharmaceutical targets. This review examines recent advances in understanding proteases in cancer and summarizes how the network of activity is co-opted to promote tumor progression.  相似文献   

4.
Balamuthia mandrillaris is a recently identified protozoan pathogen that can cause fatal granulomatous encephalitis. However, the pathogenesis and pathophysiology of B. mandrillaris encephalitis remain unclear. Because proteases may play a role in the central nervous system (CNS) pathology, we used spectrophotometric, cytopathic and zymographic assays to assess protease activities of B. mandrillaris. Using two clinical isolates of B. mandrillaris (from human and baboon), we observed that B. mandrillaris exhibits protease activities. Zymographic assays revealed major protease bands of approximate molecular weights in the region of 40-50 kDa on sodium dodecyl sulfate-polyacrylamide gels using gelatin as substrate. The protease bands were inhibited with 1,10-phenanthroline, suggesting metallo-type proteases. The proteolytic activities were observed over a pH range of 5-11 with maximum activity at neutral pH and at 42 degrees C. Balamuthia mandrillaris proteases exhibit properties to degrade extracellular matrix (ECM), which provide structural and functional support to the brain tissue. This is shown by degradation of collagen I and III (major components of collagenous ECM), elastin (elastic fibrils of ECM), plasminogen (involved in proteolytic degradation of ECM), as well as other substrates such as casein and gelatin but not haemoglobin. However, these proteases exhibited a minimal role in B. mandrillaris-mediated host cell death in vitro using human brain microvascular endothelial cells (HBMECs). This was shown using broad-spectrum matrix metalloprotease inhibitors, GM 6001 and GM 1489, which had no effect on B. mandrillaris-mediated HBMEC cytotoxicity. This is the first demonstration that B. mandrillaris exhibits metalloproteases, which may play important role(s) in the ECM degradation and thus in CNS pathology.  相似文献   

5.
6.
The diverse functional roles that proteases play in basic biological processes make them essential for virtually all organisms. Not surprisingly, proteolysis is also a critical process required for many aspects of pathogenesis. In particular, obligate intracellular parasites must precisely coordinate proteolytic events during their highly regulated life cycle inside multiple host cell environments. Advances in chemical, proteomic and genetic tools that can be applied to parasite biology have led to an increased understanding of the complex events centrally regulated by proteases. In this review, we outline recent advances in our knowledge of specific proteolytic enzymes in two medically relevant apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Efforts over the last decade have begun to provide a map of key proteotolyic events that are essential for both parasite survival and propagation inside host cells. These advances in our molecular understanding of proteolytic events involved in parasite pathogenesis provide a foundation for the validation of new networks and enzyme targets that could be exploited for therapeutic purposes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

7.
Proteases are pivotal modulators of extracellular matrix components and bioactive proteins at all phases of cutaneous wound healing and thereby essentially contribute to the successful reestablishment of skin integrity upon injury. As a consequence, disturbance of proteolytic activity at the wound site is a major factor in the pathology of chronic wounds. A large body of data acquired in many years of research provide a good understanding of how individual proteases may influence the repair process. The next challenge will be to integrate these findings and to elucidate the complex interactions of proteolytic enzymes, their inhibitors and substrates on a system-wide level. Here, we present novel approaches that might help to achieve this ambitious goal in cutaneous wound healing research.  相似文献   

8.
Serine proteases are the major proteolytic activity excreted or secreted from Chrysomya bezziana larvae as demonstrated by gelatin gel analyses and the use of specific substrates, benzoyl-Arg-p-nitroanilide and succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. Serine proteases were identified through their inhibition by 4-(2-aminoethyl)-benzene sulphonyl fluoride and classified as trypsin- and chymotrypsin-like on the basis of inhibition by tosyl-L-lysine chloromethyl ketone and tosyl-L-phenylalanine chloromethyl ketone, respectively. Like most insect serine proteases, the C. bezziana enzymes were active over broad pH range from mildly acidic to alkaline. The excreted or secreted serine proteases were purified by affinity chromatography using soybean trypsin inhibitor. A different subset of the serine proteases was isolated by salt elution from washed larval peritrophic matrices. Amino-terminal sequencing identified both trypsin and chymotrypsin-like sequences in the excreted or secreted pool with the latter being the dominant protease, whereas trypsin was the dominant species in the peritrophic matrix eluant. These results suggest that trypsin was possibly preferably adsorbed by the peritrophic matrix and may act as a final proteolytic processing stage as partially digested and ingested polypeptides pass through the peritrophic matrix. Immunoblot analysis on dissected gut tissues indicated that the anterior and posterior midguts were the main source of the serine proteases, although a novel species of 32 kDa was predominantly associated with the peritrophic matrix. Proteases are a target for a partially protective immune response and understanding the complexity of the secreted and digestive proteases is a necessary part of understanding the mechanism of the host's immunological defence against the parasite.  相似文献   

9.
Protease research in the era of systems biology   总被引:1,自引:0,他引:1  
Proteases are specific modulators of signaling molecules and their underlying pathways in addition to their degradative roles. However, proteases do not act alone, but form cascades, circuits and networks that all dynamically interconnect to form the protease web, which defines the proteolytic potential of a cell or tissue in a defined condition. To describe the protease web and its net activity several novel high-throughput proteomic techniques, in the field termed degradomics, have been developed. Emerging systems biology methods to evaluate the expression, activity and substrate discovery of proteases are presented. Understanding the protease web and its perturbations in pathology will help to develop new therapeutics for the treatment of diseases, such as cancer, arthritis and chronic obstructive pulmonary diseases.  相似文献   

10.
Serine proteases, cysteine proteases, aspartic proteases and matrix metalloproteinases play an essential role in extracellular matrix remodeling and turnover through their proteolytic action on collagens, proteoglycans, fibronectin, elastin and laminin. Proteases can also act on chemokines, receptors and anti-microbial peptides, often potentiating their activity. The intestinal mucosa is the largest interface between the external environment and the tissues of the human body and is constantly exposed to proteolytic enzymes from many sources, including bacteria in the intestinal lumen, fibroblasts and immune cells in the lamina propria and enterocytes. Controlled proteolytic activity is crucial for the maintenance of gut immune homeostasis, for normal tissue turnover and for the integrity of the gut barrier. However, in intestinal immune-mediated disorders, pro-inflammatory cytokines induce the up-regulation of proteases, which become the end-stage effectors of mucosal damage by destroying the epithelium and basement membrane integrity and degrading the extracellular matrix of the lamina propria to produce ulcers. Protease-mediated barrier disruption in turn results in increased amounts of antigen crossing into the lamina propria, driving further immune responses and sustaining the inflammatory process.  相似文献   

11.
Synovial tissue affected by rheumatoid arthritis is characterized by proliferation, which leads to irreversible cartilage and bone destruction. Current and experimental treatments have been aimed mainly at correcting the underlying immune abnormalities, but these treatments often prove ineffective in preventing the invasive destruction. We studied the expression of cyclin-dependent kinase inhibitors in rheumatoid synovial cells as a means of suppressing synovial cell proliferation. Synovial cells derived from hypertrophic synovial tissue readily expressed p16INK4a when they were growth-inhibited. This was not seen in other fibroblasts, including those derived from normal and osteoarthritis-affected synovial tissues. In vivo adenoviral gene therapy with the p16INK4a gene efficiently inhibited the pathology in an animal model of rheumatoid arthritis. Thus, the induction of p16INK4a may provide a new approach to the effective treatment of rheumatoid arthritis.  相似文献   

12.
The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF's angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies.  相似文献   

13.
In this review we present data about small intestine serine proteases, which are a considerable part of the proteolytic apparatus in this major part of the gastrointestinal tract. Serine proteases of intestinal epitheliocytes, their structural-functional features, cellular localization, physiological substrates, and mechanisms of activity regulation are examined. Information about biochemical and functional properties of serine proteases is presented in a common context with morphological and physiological data, this being the basis for understanding the functional processes taking place in upper part of the intestine. Serine proteases play a key role in the physiology of the small intestine and provide the normal functioning of this organ as part of the digestive system in which hydrolysis and suction of food substances occur. They participate in renewal and remodeling of tissues, retractive activity of smooth musculature, hormonal regulation, and defense mechanisms of the intestine.  相似文献   

14.
Connective tissue cells are capable of both synthesizing and degrading the macromolecular components of the extracellular matrix. The degradation of proteoglycan and collagen has been shown to be associated with the extracellular release of proteolytic enzymes, some of which are of lysosomal origin. The identity in carilage of two previously unrecognized proteases, capable of proteoglycan breakdown (CPGases), has recently been achieved by the use of a new assay for proteoglycan degradation. These enzymes have been shown to be synthesized and released in response to vitamin A. The third proteoglycan degrading enzyme of connective tissue cells, cathepsin D, has been located in the pericellular environment by trapping with specific antibody and the pattern of release studied in organ culture, experimental arthritis and in human rheumatoid tissues. The secretion of this enzyme and possibly also of the other CPGases is thought to be of importance in the local (pericellular) turnover of matrix macromolecules and, in association with collagenase, to be the cause of the excessive degradation in the pannus erosion of articular cartilage in rheumatoid arthritis.  相似文献   

15.
Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow researchers to study protease biological functions using proteomics and mass spectrometry. We describe methods to assess protease expression at the messenger RNA level using DNA microarrays and at the protein level using mass spectrometry-based proteomics. We also review methods to reveal and quantify the activity state of proteases and to identify their biological substrates. The information acquired using these high throughput, high content techniques can then be interpreted with different bioinformatics approaches to reveal the effects of proteolysis on the system under study. Systems biology of the protease web-degradomics in the broadest sense-promises to reveal the functions of proteases in homeostasis and in disease states. This will indicate which proteases participate in defined pathologies and will help targeting specific proteases for disease treatments.  相似文献   

16.
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.  相似文献   

17.
Hematopoietic stem cells (HSCs) have the capability to migrate back and forth between their preferred microenvironment in bone marrow niches and the peripheral blood, but under steady-state conditions only a marginal number of stem cells can be found in the circulation. Different mobilizing agents, however, which create a highly proteolytic milieu in the bone marrow, can drastically increase the number of circulating HSCs. Among other proteases secreted and membrane-bound matrix metalloproteinases (MMPs) are known to be involved in the induced mobilization process and can digest niche-specific extracellular matrix components and cytokines responsible for stem cell retention to the niches. Iatrogenic stem cell mobilization and stem cell homing to their niches are clinically employed on a routine basis, although the exact mechanisms of both processes are still not fully understood. In this review we provide an overview on the various roles of MMPs in the induced release of HSCs from the bone marrow.  相似文献   

18.
Rhomboids are an ancient and conserved family of intramembrane-cleaving proteases, a small group of proteolytic enzymes capable of hydrolyzing a peptide bond within a transmembrane helix that anchors a substrate protein to the membrane. Mitochondrial rhomboids evolved in eukaryotes to coordinate a critical aspect of cell biology, the regulation of mitochondrial membranes dynamics. This function appears to have required the emergence of a structural feature that is unique among all other rhomboids: an additional transmembrane helix (TMH) positioned at the N-terminus of six TMHs that form the core proteolytic domain of all prokaryotic and eukaryotic rhomboids. This “1 + 6” structure, which is shared only among mitochondrial rhomboids, defines a subfamily of rhomboids with the prototypical family member being mammalian Parl. Here, we present the findings that in 11 years have elevated mitochondrial rhomboids as the gatekeepers of mitochondrial dynamics and apoptosis; further, we discuss the aspects of their biology that are bound to introduce new paradigm shifts in our understanding of how the organelle uses this unique type of protease to govern stress, signaling to the nucleus, and other key mitochondrial activities in health and disease.  相似文献   

19.
Despite decades of research, only a very limited number of matrix metalloproteinase (MMP) inhibitors have been successful in clinical trials of arthritis. One of the central problems associated with this failure may be our inability to monitor the local activity of proteases in the joints since the integrity of the extracellular matrix results from an equilibrium between noncovalent, 1:1 stoichiometric binding of protease inhibitors to the catalytic site of the activated forms of the enzymes. In the present work, we have measured by flow cytometry the net proteolytic activity in synovial fluids (SF) collected from 95 patients with osteoarthritis and various forms of inflammatory arthritis, including rheumatoid arthritis, spondyloarthropathies, and chronic juvenile arthritis. We found that SF of patients with inflammatory arthritis had significantly higher levels of proteolytic activity than those of osteoarthritis patients. Moreover, the overall activity in inflammatory arthritis patients correlated positively with the number of infiltrated leukocytes and the serum level of C-reactive protein. No such correlations were found in osteoarthritis patients. Members of the MMP family contributed significantly to the proteolytic activity found in SF. Small-molecular-weight MMP inhibitors were indeed effective for inhibiting proteolytic activity in SF, but their effectiveness varied greatly among patients. Interestingly, the contribution of MMPs decreased in patients with very high proteolytic activity, and this was due both to a molar excess of tissue inhibitor of MMP-1 and to an increased contribution of other proteolytic enzymes. These results emphasize the diversity of the MMPs involved in arthritis and, from a clinical perspective, suggest an interesting alternative for testing the potential of new protease inhibitors for the treatment of arthritis.  相似文献   

20.
The role of human HtrA1 in arthritic disease   总被引:1,自引:0,他引:1  
Human HtrA1 belongs to a widely conserved family of serine proteases involved in various aspects of protein quality control and cell fate. Although HtrA1 has been implicated in the pathology of several diseases, its precise biological functions remain to be established. Through identification of potential HtrA1 targets, studies presented herein propose that within the context of arthritis pathology HtrA1 contributes to cartilage degradation. Elevated synovial HtrA1 levels were detected in fluids obtained from rheumatoid and osteoarthritis patients, with synovial fibroblasts identified as a major source of secreted HtrA1. Mass spectrometry analysis of potential HtrA1 substrates within synovial fluids identified fibronectin as a candidate target, and treatment of fibronectin with recombinant HtrA1 led to the generation of fibronectin-degradation products that may be involved in cartilage catabolism. Consistently, treatment of synovial fibroblasts with HtrA1 or HtrA1-generated fibronectin fragments resulted in the specific induction of matrix metalloprotease 1 and matrix metalloprotease 3 expression, suggesting that HtrA1 contributes to the destruction of extracellular matrix through both direct and indirect mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号