首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
If species-specific male genitalia are courtship devices under sexual selection by cryptic female choice, then species-specific aspects of the morphology and behaviour of male genitalia should often function to stimulate the female during copulation. The morphology and behaviour of the complex, species-specific male genitalia of the tsetse fly, Glossina pallidipes Austen, were determined from both direct observations and dissections of flash-frozen copulating pairs; we found that some male genitalic traits probably function to stimulate the female, while others function to restrain her. The male clamps the ventral surface of the female's abdomen tightly with his powerful cerci. Clamping does not always result in intromission. Clamping bends the female's body wall and her internal reproductive tract sharply, posteriorly and dorsally, and pinches them tightly. The male performed sustained, complex, stereotyped, rhythmic squeezing movements with his cerci that were not necessary to mechanically restrain the female and appeared instead to have a stimulatory function. Six different groups of modified setae on and near the male's genitalia rub directly against particular sites on the female during squeezing. The designs of these setae correlate with the force with which they press on the female and the probable sensitivity of the female surfaces that they contact. As expected under the hypothesis that these structures are under sexual selection by female choice, several traits suspected to have stimulatory functions have diverged in G. pallidipes and its close relative, G. longipalpis. Additional male non-genitalic behaviour during copulation, redescribed more precisely than in previous publications, is also likely to have a courtship function. The elaborate copulatory courtship behaviour and male genitalia may provide the stimuli that previous studies showed to induce female ovulation and resistance to remating.  相似文献   

2.
Males of the Venezuelan pholcid spider Kaliana yuruani have unique genitalia, with the procursi about six times as long as usual in the family. The present article describes the previously unknown female, searching for a morphological correlate in the female genitalia to the male's exaggeration. Reconstruction of histological serial sections reveals an internal female complexity that is unequalled in pholcid spiders. An intricate system of ducts and folds is arranged in an asymmetric way, making this the third known case of genital asymmetry in spiders. The term "cryptic female exaggeration" is used in analogy to cryptic female choice, pointing to the fact that from the outside, the female genitalia do not appear unusual. I propose that cryptic female exaggeration may be relatively common in copulatory structures if male exaggerations need to be evaluated according to the female choice by mechanical fit model. Finally, the evolution of genital asymmetry in spiders is contrasted with that in insects.  相似文献   

3.
Genitalia are among the fastest evolving morphological traits as evidenced by their common function as diagnostic traits in species identification. Even though the main function of genitalia is the successful transfer of spermatozoa, the presence of diverse structures that are obviously not necessary for this suggests that genitalia are a target of sexual selection. The male genitalia of many spider species are extremely complex and equipped with numerous sclerites, plates and spines whose functions are largely unknown. Selection on male genitalia may be particularly strong in sexually cannibalistic spiders, where mating success of males is restricted to a single female. We investigated the copulatory mechanism of the sexually cannibalistic orb weaving spider Argiope bruennichi by shock freezing mating pairs and revealed a complicated interaction between the appendices and sclerites that make up the male gonopods (paired pedipalps). The plate that covers the female genital opening (scape) is secured between two appendices of the male genital bulb, while three sclerites that bear the sperm duct are unfolded and extended into the female copulatory opening. During copulation, females attack and cannibalise the male and males mutilate their genitalia in about 80% of cases. Our study demonstrates that (i) genital coupling is largely accomplished on the external part of the female genitalia, (ii) that the mechanism requires an interaction between several non-sperm-transferring structures and (iii) that there are two predetermined breaking points in the male genitalia. Further comparative work on the genus Argiope will test if the copulatory mechanism with genital mutilation indeed is an adaptation to sexual cannibalism or if cannibalism is a female counter adaptation to male monopolisation through genital plugging.  相似文献   

4.
Symmetry is such a conspicuous feature of life that asymmetries draw our immediate attention. While not uncommon in bilateral organisms in general, asymmetry in spiders is rare. Here I report the first case of antisymmetry in external female genitalia in spiders, in the new genus Asygyna (Theridiidae: Araneae) from Madagascar. In the nearly 39 000 species of spiders described to date, the external structure of the female genitalia is symmetric. In entelegyne spiders paired external copulatory openings each lead to an internal copulatory duct, whose roughly symmetrical trajectories terminate in paired receptacles, the spermathecae. In Asygyna , here exemplified by two new species, A. huberi and A. coddingtoni , laterality is evident in the internal and external female genitalia. A single copulatory opening leads (either to the left or right depending on the individual) to a single copulatory duct with a distinctly asymmetric trajectory. The duct splits terminally shortly before entering the two spermathecae. The males are symmetric, but possibly only one palp can be used in copulation with each female. If adaptive, the selective forces behind this asymmetry are perplexing, as male access to females seems reduced. However, if males are plentiful, asymmetry may benefit the female by reducing insertion times and thus shortening copulation time, and by tightening her control over which males sire her offspring. Asygyna has a range of other bizarre sex-related morphologies, including prosomal pits and a well developed stridulatory mechanism in both sexes, a male proboscis, and simplified palps. A phylogenetic analysis, including 63 taxa and 242 morphological characters, places Asygyna in Pholcommatinae, sister to the enigmatic genus Carniella .  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 211–232.  相似文献   

5.
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

6.
7.
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level.  相似文献   

8.
In polyandrous mating systems, events occurring during copulation can alter the fate of the mating male's sperm. These events may exert selective pressures resulting in the evolution of diverse reproductive behaviours, morphologies and physiologies. This study investigates the role of male and female copulatory behaviours on sperm fate in the red flour beetle, Tribolium castaneum. I describe and quantify copulatory behaviours for mating pairs, and examine sperm fate by quantifying sperm transfer, sperm storage and second male sperm precedence. Whereas female quiescence during copulation and male leg rubbing during copulation together account for significant variation (26%) in sperm precedence, female copulatory quiescence alone provides information about the timing and numbers of sperm transferred. These experiments show that a female copulatory behaviour predicts sperm fate, and emphasize the value of studying variation in both male and female copulatory behaviours for understanding factors affecting sperm use.  相似文献   

9.
The genus Laranda has six described species and is confined to South and Southeast of Brazil. We describe a new species and discuss the biology and distribution of the genus. The new species can be distinguished from its known congeners by the following characteristics: absence of yellow spots on pronotum and base of posterior tibiae; female copulatory papilla: sclerotization in dorsal view forming opposing acute angles, apical lobes narrow and small; male genitalia: pseudepiphallic median process short and wide; pseudepiphallic paramere with apex incurved and ectophallic fold surpassing apex of the parameres. The genus is distributed within the Atlantic Forest biome; the new species is found on tree trunks, as well as on forest leaf litter.  相似文献   

10.
Male genitalia in Drosophila exemplify strikingly rapid and divergent evolution, whereas female genitalia are relatively invariable. Whereas precopulatory and post-copulatory sexual selection has been invoked to explain this trend, the functional significance of genital structures during copulation remains obscure. We used time-sequence analysis to study the functional significance of external genitalic structures during the course of copulation, between D. melanogaster and D. simulans. This functional analysis has provided new information that reveals the importance of male-driven copulatory mechanics and strategies in the rapid diversification of genitalia. The posterior process, which is a recently evolved sexual character and present only in males of the melanogaster clade, plays a crucial role in mounting as well as in genital coupling. Whereas there is ample evidence for precopulatory and/or post-copulatory female choice, we show here that during copulation there is little or no physical female choice, consequently, males determine copulation duration. We also found subtle differences in copulatory mechanics between very closely related species. We propose that variation in male usage of novel genitalic structures and shifts in copulatory behaviour have played an important role in the diversification of genitalia in species of the Drosophila subgroup.  相似文献   

11.
Polyandry is ubiquitous in insects and provides the conditions necessary for male‐ and female‐driven forms of post‐copulatory sexual selection to arise. Populations of Amphiacusta sanctaecrucis exhibit significant divergence in portions of the male genitalia that are inserted directly into the female reproductive tract, suggesting that males may exercise some post‐copulatory control over fertilization success. We examine the potential for male–male and male–female post‐copulatory interactions to influence paternity in wild‐caught females of A. sanctaecrucis and contrast our findings with those obtained from females reared in a high‐density laboratory environment. We find that female A. sanctaecrucis exercise control by mating multiple times (females mount males), but that male–male post‐copulatory interactions may influence paternity success. Moreover, post‐copulatory interactions that affect reproductive success of males are not independent of mating environment: clutches of wild‐caught females exhibit higher sire diversity and lower paternity skew than clutches of laboratory‐reared females. There was no strong evidence for last male precedence in either case. Most attempts at disentangling the contributions of male–male and male–female interactions towards post‐copulatory sexual selection have been undertaken in a laboratory setting and may not capture the full context in which they take place – such as the relationship between premating and post‐mating interactions. Our results reinforce the importance of designing studies that can capture the multifaceted nature of sexual selection for elucidating the role of post‐copulatory sexual selection in driving the evolution of male and female reproductive traits, especially when different components (e.g. precopulatory and post‐copulatory interactions) do not exert independent effects on reproductive outcomes.  相似文献   

12.
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily--though largely independently of each other--within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs.  相似文献   

13.
The role of sexual selection in fuelling genital evolution is becoming increasingly apparent from comparative studies revealing interspecific divergence in male genitalia and evolutionary associations between male and female genital traits. Despite this, we know little about intraspecific variance in male genital morphology, or how male and female reproductive traits covary among divergent populations. Here we address both topics using natural populations of the guppy, Poecilia reticulata, a livebearing fish that exhibits divergent patterns of male sexual behaviour among populations. Initially, we performed a series of mating trials on a single population to examine the relationship between the morphology of the male's copulatory organ (the gonopodium) and the success of forced matings. Using a combination of linear measurements and geometric morphometrics, we found that variation in the length and shape of the gonopodium predicted the success of forced matings in terms of the rate of genital contacts and insemination success, respectively. We then looked for geographical divergence in these traits, since the relative frequency of forced matings tends to be greater in high-predation populations. We found consistent patterns of variation in male genital size and shape in relation to the level of predation, and corresponding patterns of (co)variation in female genital morphology. Together, these data enable us to draw tentative conclusions about the underlying selective pressures causing correlated patterns of divergence in male and female genital traits, which point to a role for sexually antagonistic selection.  相似文献   

14.
Males of several insect species inflict wounds on female genitalia during copulation, but the significance of such copulatory wounds for males is not clear. I compared the genitalia of virgin and mated Formica japonica females and for the first time report the occurrence of copulatory wounds in this monandrous ant species. All inseminated females examined had two types of melanized patches, indicating wound repair, and the serrated penis valves and sharp-pointed volsellar digitus of male genitalia were the likely instruments of these wounds. Physically damaging mating in monandrous species supports the view that copulatory wounds do not necessarily contribute to postcopulatory fitness gains for males via advantages in sperm competition or cryptic female choice. Received 10 September 2007; revised 15 October 2007; accepted 16 October 2007.  相似文献   

15.
We demonstrate that extending copulation enhances probability of paternity in sand lizards and that determinants of copulation duration depend on a males' mating order (first or second). First males, with no information on presence of rivals, extend copulation when mating with a more fecund female. Second males, however, adjust copula duration in relation to a first male's relatedness with his female, which there is reason to believe can be deduced from the MHC-related odor of the copulatory plug. Male-female relatedness negatively influences a male's probability of paternity, and when second males are in a favored role (i.e., the first male is the one more closely related to the female), second males transfer larger ejaculates, resulting in higher probability of paternity. This result corroborates predictions from recent theoretical models on sperm expenditure theory incorporating cryptic female choice and sexual conflict. More specifically, the results conform to a "random roles" model, which depicts males as being favored by some females and disfavored by others, but not to a "constant-type" model, in which a male is either favored or disfavored uniformly by all females in a population.  相似文献   

16.
Male Micrathena gracilis require two copulations, separated by a dismount, in order to inseminate both reproductive tracts of the female. We examined several factors that might influence a male's copulatory success. Web structure influenced male courtship and dismount tactics, but not copulatory frequency. The presence of another male reduced the likelihood of a given male copulating with both tracts, a limitation mediated by sexual responsiveness of the female. Mating status of the female did influence copulatory frequency; males were less likely to copulate a second time with nonvirgin females. In summary, males modify mating activities to reduce predation by females, to reduce intermale competition, and to avoid expending gametes when there is little chance of fertilization. Females influence males by predatory activities, mediated through web structure, and enhancing sperm competition among males.  相似文献   

17.
Calixolepis thuli n. g., n. sp. is described and figured on the basis of the specimens from the wood duck Aix sponsa (L.) (Anseriformes: Anatidae) from Cuba and the USA. The tapeworm is characterised by: (1) strobila of medium size; (2) deep genital atrium; (3) external accessory sac; (4) unilateral genital pores, with female genital ducts situated anterior to male ducts; and (5) the following characteristic structure of the male and female terminal genitalia: the genital pouch has a stylet and a goblet-like structure, the calix; a cirrus is absent; and the thick-walled copulatory part of the vagina forms vaginal vestibule distally which may open through a vaginal papilla into the genital atrium. Other morphological structures indicate a relationship with species of the genus Sobolevicanthus Spasskii & Spasskaya, 1954 or with Cladogynia Baer, 1938 (Hymenolepididae). The differences between the tapeworms from Cuba and the USA suggest the possible occurrence of various morphological forms of Calixolepis.  相似文献   

18.
Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash‐frozen mating pairs from three Phyllophaga species and investigated fine‐scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity.  相似文献   

19.
Selection pressures influencing the way in which males stimulate females during copulation are not well understood. In mammals, copulatory stimulation can influence female remating behaviour, both via neuroendocrine mechanisms mediating control of sexual behaviour, and potentially also via effects of minor injury to the female genital tract. Male adaptations to increase copulatory stimulation may therefore function to reduce sperm competition risk by reducing the probability that females will remate. This hypothesis was tested using data for primates to explore relationships between male penile anatomy and the duration of female sexual receptivity. It was predicted that penile spines or relatively large bacula might function to increase copulatory stimulation and hence to reduce the duration of female sexual receptivity. Results of the comparative analyses presented show that, after control for phylogenetic effects, relatively high penile spinosity of male primates is associated with a relatively short duration of female sexual receptivity within the ovarian cycle, although no evidence was found for a similar relationship between baculum length and duration of female sexual receptivity. The findings presented suggest a new potential function for mammalian penile spines in the context of sexual selection, and add to growing evidence that sperm competition and associated sexual conflict are important selection pressures in the evolution of animal genitalia.  相似文献   

20.
The morphologies of male genitalia often appear harmful or aggressive, as if they may inflict physical damage upon females during copulation. Such male genitalia are often thought to function in intra- and intersexual interactions during mating. In the carabid genus Carabus, division Spinulati, males possess a spine (spinula) on the intromittent organ, of which function is unknown. To reveal the function of the spinula, we studied the mating behavior and genital coupling of a Spinulati species, Carabus (Limnocarabus) clathratus. The males positioned the spinula along the inner wall of the vaginal opening throughout copulation. This placement created a small dent and subsequently a melanized patch (wound) on the vaginal wall, but the spinula rarely penetrated the vaginal wall. The spinula did not reach the innermost part of the vagina where the spermatophore is deposited. These results suggest that the spinula is not used for inflicting damage on female genitalia or manipulating spermatophores of rival males. During spermatophore formation, the male partially withdrew the aedeagus, and only the aedeagal tip and endophallus remained within the female. By placing the spinula against the vaginal wall, the male could hold the endophallus within the vaginal chamber in the unstable copulatory posture. Thus, our observations suggest that the spinula primarily functions as an "anchor" to maintain the coupling of the male and female genitalia and thereby ensure insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号