首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogeographical studies frequently detect range shifts, both expansions (including long-distance dispersal) and contractions (including vicariance), in the studied taxa. These processes are usually inferred from the patterns and distribution of genetic variation, with the potential pitfall that different historical processes may result in similar genetic patterns. Using a combination of DNA sequence data from the plastid genome, AFLP fingerprinting, and rigorous phylogenetic and coalescence-based hypothesis testing, we show that Androsace halleri (currently distributed disjunctly in the northwestern Iberian Cordillera Cantábrica, the eastern Pyrenees, and the French Massif Central and Vosges), or its ancestor, was once more widely distributed in the Pyrenees. While there, it hybridized with Androsace laggeri and Androsace pyrenaica, both of which are currently allopatric with A. halleri. The common ancestor of A. halleri and the north Iberian local endemic Androsace rioxana probably existed in the north Iberian mountain ranges with subsequent range expansion (to the French mountain ranges of the Massif Central and the Vosges) and allopatric speciation (A. rioxana, A. halleri in the eastern Pyrenees, A. halleri elsewhere). We have thus been able to use the reticulate evolution in this species group to help elucidate its phylogeographical history, including evidence of range contraction.  相似文献   

2.

Three faunal areas—northern (Three Kings Islands, Northland, Auckland, Coromandel Peninsula, and offshore islands), central (most of Nelson, north‐east Buller, Marlborough, Marlborough Sounds, Kaikoura, northern North Canterbury), and southern (Fiordland, southern Otago Lakes, southern Central Otago, southern Dunedin, Southland, Stewart Island) —are each characterised by the local endemicity of about 20% of the total targaremine species of New Zealand. They are separated by areas of no endemicity. Arbitrary subareas are delineated in the northern and southern areas. Species not endemic to a single faunal area have wider ranges covering more than one area. The targaremine faunal areas and subareas are compared with those recognised for other units of the New Zealand biota. Instances of allopatric and parapatric species are listed. All 30 targaremine species in New Zealand are endemic; the effects of Pleistocene cold climate on their distribution and speciation are discussed. Wing development is discussed in relation to its role in initial distribution and dispersal over geographical barriers, and in subsequent adaptations to ecological niches and/or post‐Pleistocene extensions of range. Analysis of host‐plant data reveals that the Targaremini have no marked host specificity; ecologically significant data are presented for several species.  相似文献   

3.
Aim To undertake a quantitative review of the Quaternary fossil record of European water beetles to evaluate their geographical and temporal coverage, and to characterize the extent and typology of the shifts in their geographical ranges. Location Europe. Methods We compiled Quaternary water beetle records from public databases and published references. We included in the analyses species of 10 families of aquatic Coleoptera, and recorded range shifts through the comparison of the location of fossil remains with the current distribution of the species. We explored the ecological representativeness of the fossil record, as well as the relationship between range shifts and the habitat type of the species. Results Our final data set included over 9000 records for 259 water beetle species. Fossil remains of aquatic beetles have been documented exclusively north of 42° N, with most of the records from the British Isles and virtually none from southern Europe or the Mediterranean Basin. Over 80% of the records were from the Late Glacial and the Holocene periods (the last 15 kyr), and overall approximately 20% of the species have been recorded outside their present range (23% excluding Holocene records). Most range shifts were southern or western extensions of currently widespread, northern species, with 10 species displaying major range shifts through the Palaearctic. Lentic species were significantly more likely to have experienced major range shifts, even accounting for the general ecological bias of the fossil record towards lentic habitats. Main conclusions Our results show that the Quaternary record of aquatic Coleoptera is geographically, temporally and ecologically skewed, necessitating caution when extrapolating general conclusions about range changes and ecological stability to other areas or periods on the basis of such scattered evidence. Most central and northern European species for which there are fossil records seem to have conserved their ranges through the Late Pleistocene, with geographical shifts mostly restricted to species with current widespread north Palaearctic or Holarctic distributions. Major range shifts through the Palaearctic are taxonomically uneven, suggesting either an idiosyncratic behaviour of taxa depending on ecological or phylogenetic factors, or a sampling artefact produced by the limited availability of taxonomic expertise.  相似文献   

4.
Abstract.— The Pleistocene Epoch has been frequently cited as a period of intense speciation for a significant portion of temperate continental biotas. To critically assess the role of Pleistocene glaciations on the evolution of the freshwater fish clade Micropterus , we use a phylogenetic analysis of complete gene sequences from two mitochondrial genes (cytochrome b and ND2), and a fossil calibration of the molecular clock to estimate ages of speciation events and rates of diversification. The absence of substantial morphological and ecological divergence together with endemism of five of the eight species in North American tributaries of the Gulf of Mexico may be interpreted as the result of a recent Pleistocene origin for these species. Speciation dates in Micropterus range from 1.01 ± 0.32 to 11.17 ± 1.02 million years ago. Only one speciation event is dated to the Pleistocene, and rates of diversification are not significantly variable in Micropterus. The premise that the Pleistocene was an exceptional period of speciation in Micropterus is not supported. Instead, a Gulf Coast allopatric speciation model is proposed, and predicts periods of dynamic speciation driven by sea level fluctuations in the Late Miocene and Pliocene. The Pleistocene, however, was a period of significant intraspecific mitochondrial lineage diversification. The application of the Gulf Coast allopatric speciation model to the remaining aquatic fauna of the Gulf of Mexico coast in North America will rely on robust phylogenetic hypotheses and accurate age estimations of speciation events.  相似文献   

5.
Lee YH  Lin CP 《Molecular ecology》2012,21(15):3739-3756
Climatic oscillations during the Pleistocene period could have had a profound impact on the origin of tropical species by the alternation of allopatric isolation and interpopulation gene flow cycles. However, whether tropical speciation involves strictly allopatric isolation, or proceeds in the face of homogenizing gene flow, is relatively unclear. Here, we investigated geographical modes of speciation in four closely related Euphaea damselfly species endemic to the subtropical and tropical East Asian islands using coalescent analyses of a multilocus data set. The reconstructed phylogenies demonstrated distinct species status for each of the four species and the existence of two sister species pairs, Euphaea formosa/E. yayeyamana and E. decorata/E. ornata. The species divergence time of the sibling Euphaea damselflies dates back to within the last one Mya of the Middle to Lower Pleistocene. The speciation between the populous E. formosa of Taiwan and the less numerous E. yayeyamana of the Yaeyama islands occurred despite significant bidirectional, asymmetric gene flow, which is strongly inconsistent with a strictly allopatric model. In contrast, speciation of the approximately equal-sized populations of E. decorata of the southeast Asian mainland and E. ornata of Hainan is inferred to have involved allopatric divergence without gene flow. Our findings suggest that differential selection of natural or sexual environments is a prominent driver of species divergence in subtropical E. formosa and E. yayeyamana; whereas for tropical E. decorata and E. ornata at lower latitudes, allopatric isolation may well be a pivotal promoter of species formation.  相似文献   

6.
Theory predicts that clades diversifying via sympatric speciation will exhibit high diversification rates. However, the expected rate of diversification in clades characterized by allopatric speciation is less clear. Previous studies have documented significantly higher speciation rates in freshwater fish clades diversifying via sympatric versus allopatric modes, leading to suggestions that the geographic pattern of speciation can be inferred solely from knowledge of the diversification rate. We tested this prediction using an example from darters, a clade of approximately 200 species of freshwater fishes endemic to eastern North America. A resolved phylogeny was generated using mitochondrial DNA gene sequences for logperches, a monophyletic group of darters composed of 10 recognized species. Divergence times among logperch species were estimated using a fossil calibrated molecular clock in centrarchid fishes, and diversification rates in logperches were estimated using several methods. Speciation events in logperches are recent, extending from 4.20 +/- 1.06 million years ago (mya) to 0.42 +/- 0.22 mya, with most speciation events occurring in the Pleistocene. Diversification rates are high in logperches, at some nodes exceeding rates reported for well-studied adaptive radiations such as Hawaiian silverswords. The geographic pattern of speciation in logperches was investigated by examining the relationship between degree of sympatry and the absolute age of the contrast, with the result that diversification in logperches appears allopatric. The very high diversification rate observed in the logperch phylogeny is more similar to freshwater fish clades thought to represent examples of sympatric speciation than to clades representing allopatric speciation. These results demonstrate that the geographic mode of speciation for a clade cannot be inferred from the diversification rate. The empirical observation of high diversification rates in logperches demonstrates that allopatric speciation can occur rapidly.  相似文献   

7.
Even in cases in which geographic isolation appears to have driven the speciation of regional endemics, range shifts during the Pleistocene climatic oscillations may also have influenced their evolutionary history. Elucidating speciation history can provide novel insights into evolutionary dynamics following climatic oscillations. We demonstrated a sister relationship between the Japanese alpine endemic Cardamine nipponica and the currently allopatric, widespread arctic-alpine Cardamine?bellidifolia (Brassicaceae) based on internal transcribed spacer (ITS) sequences and 10 other nuclear genes. Speciation history was inferred using demographic parameters under the isolation with migration model. The estimated demographic parameters showed that the population size of C. nipponica was similar to that of C. bellidifolia and that gene flow occurred exclusively from C. nipponica to C. bellidifolia after speciation. The inferred speciation history, which included gene flow, suggests that geographic barriers between the peripheral C. nipponica and the widespread C. bellidifolia were reduced during the Pleistocene. The asymmetric introgression implies that genetic isolation may have been involved in the speciation of C. nipponica. Our results suggest that even currently allopatric species may not have diverged solely under geographic isolation, and that their evolutionary history may have been influenced by Pleistocene range dynamics.  相似文献   

8.
In Europe, southern peninsulas served as refugia during cold periods in the Pleistocene, acting both as centres of origin of endemisms and as sources from which formerly glaciated areas were recolonized during interglacial periods. Previous studies have revealed that within the main refugial areas, intraspecific lineages often survived in allopatric refugia. We analysed two mitochondrial markers (nad4, control region, approximately 1.4 kb) in 103 individuals representing the entire distribution of Lissotriton boscai, a newt endemic to the western Iberian Peninsula. We inferred the evolutionary history of the species through phylogenetic, phylogeographic and historical demographic analyses. The results revealed unexpected, deep levels of geographically structured genetic variability. We identified two main evolutionary lineages, each containing three well-supported clades. The first historical split involved populations from central-southwestern coastal Portugal and the ancestor of all the remaining populations around 5.8 million years ago. Both lineages were subsequently fragmented into different population groups between 2.5 and 1.2 million years ago. According to nested clade analysis, at lower hierarchical levels the patterns suggest restricted gene flow with isolation by distance, whereas at higher levels the clades exhibit signatures of contiguous range expansion. Bayesian Skyline Plots show recent bottlenecks, followed by demographic expansions in all lineages. The significant genetic structure found is consistent with long-term survival of populations in allopatric refugia, supporting the 'refugia-within-refugia' scenario for southern European peninsulas. The comparison of our results with other co-distributed species highlights the generality of this hypothesis for the Iberian herpetofauna and suggests that Mediterranean refuges had more relevance for the composition and distribution of present biodiversity patterns than currently acknowledged. We briefly discuss the taxonomic and conservation implications of our results.  相似文献   

9.
The expected upward shift of trees due to climate warming is supposed to be a major threat to range‐restricted high‐altitude species by shrinking the area of their suitable habitats. Our projections show that areas of endemism of five taxonomic groups (vascular plants, snails, spiders, butterflies, and beetles) in the Austrian Alps will, on average, experience a 77% habitat loss even under the weakest climate change scenario (+1.8 °C by 2100). The amount of habitat loss is positively related with the pooled endemic species richness (species from all five taxonomic groups) and with the richness of endemic vascular plants, snails, and beetles. Owing to limited postglacial migration, hotspots of high‐altitude endemics are situated in rather low peripheral mountain chains of the Alps, which have not been glaciated during the Pleistocene. There, tree line expansion disproportionally reduces habitats of high‐altitude species. Such legacies of climate history, which may aggravate extinction risks under future climate change have to be expected for many temperate mountain ranges.  相似文献   

10.
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.  相似文献   

11.
One of the most critical challenges facing ecologists today is to understand the changing geographic distribution of species in response to current and predicted global warming. Coastal Western Australia is a natural laboratory in which to assess the effect of climate change on reef coral communities over a temporal scale unavailable to studies conducted solely on modern communities. Reef corals composing Late Pleistocene reef assemblages exposed at five distinct localities along the west Australian coast were censused and the results compared with coral occurrence data published for the modern reefs offshore of each locality. The resulting comparative data set comprises modern and Late Pleistocene reef coral communities occurring over approximately 12° of latitude. For the modern reefs this gradient includes the zone of overlap between the Dampierian and Flindersian Provinces. Modern reef coral communities show a pronounced gradient in coral composition over the latitudinal range encompassed by the study, while the gradient in community composition is not as strong for Pleistocene communities. Tropical‐adapted taxa contracted their ranges north since Late Pleistocene time, emplacing two biogeographic provinces in a region in which a single province had existed previously. Beta diversity values for adjacent communities also reflect this change. Modern reefs show a distinct peak in beta diversity in the middle of the region; the peak is not matched by Pleistocene reefs. Beta diversity is correlated with distance only for comparisons between modern reefs in the north and the fossil assemblages, further supporting change in distribution of the biogeographic provinces in the study area. Coral taxa present in modern communities clearly expanded and contracted their geographic ranges in response to climate change. Those taxa that distinguish Pleistocene from modern reefs are predicted to migrate south in response to future climate change, and potentially persist in ‘temperature refugia’ as tropical reef communities farther north decline.  相似文献   

12.
13.
Although the moss flora of Mexico consists of nearly 1000 species, only 77 are endemic. The country has many poorly collected or unexplored areas, but the number of endemic mosses is not expected to undergo a substantial increase; percent endemism has in fact decreased with taxonomic revisions and monographs and better exploration in other countries. Literature and herbarium records (n?=?584) were used to obtain an updated list of endemic mosses and their state distribution in Mexico. Cluster analysis and mapping indicate that there are three main areas of endemism: Lowland areas in various states, the mountain area along 19–20°N lat., and the highlands in Oaxaca and Chiapas. Similarity by province shows that Trans-Mexican Volcanic Belt, Sierra Madre Oriental, Chihuahuan Desert, and Sierra Madre del Sur have the highest numbers of endemic species. Five monotypic genera and 76 species (including two infraspecific taxa), many of which have comparatively narrow geographical ranges, suggest that speciation is recent, that species have had little time to disperse, and were formed by Pleistocene environmental climates in the highlands; older speciation may be represented by widespread disjunct species that still are found in the highlands of Mexico.  相似文献   

14.
Sympatric speciation is now accepted as theoretically plausible and a likely explanation for divergence in a handful of taxa, but its contribution to large-scale patterns of speciation remains contentious. A major problem is that it is difficult to differentiate between alternate scenarios of geographic speciation when species ranges have shifted substantially in the past. Previous studies have searched for a signal of the geographic mode of speciation by testing for a correlation between time since speciation and range overlap. Here we use simulations to show that the proportion of species showing zero or complete range overlap are more reliable indicators of the geography of speciation than is the correlation between time since speciation and overlap. We then apply these findings to the distributions of 291 pairs of avian sister species. Although 49% of pairs show some overlap in their ranges, our simulations show that this is not surprising under allopatric models of speciation. More revealingly, less than 2% show complete range overlap. Our simulations demonstrate that the observed patterns are most consistent with a model in which allopatric speciation is dominant but in which sympatric speciation is also present and contributes 5% of speciation events.  相似文献   

15.
Aim To investigate the importance of vicariance in shaping the north‐west European land snail fauna. Location North‐west Europe. Methods We tested whether there is a non‐random congruence, i.e. a clustering of species ranges, using a Monte Carlo procedure with a null model that generates range data sets such that their range size distribution, the species richness distribution of the geographic cells and the spatial autocorrelation of the occurrences of a taxon approach the parameters in the real data set. Biotic elements, groups of species with similar ranges, were delimited with Model based Gaussian clustering. The prediction that closely related species belong to different biotic elements, has been tested with a chi‐square test. Results The distribution areas of the north‐west European land snail species are significantly clustered as predicted by the vicariance model. One widespread and seven regional biotic elements were identified. Contrary to the predictions of the vicariance model, closely related north‐west European land snail species belong significantly more often to the same biotic element than should be expected by chance. Main conclusions The clustering of closely related north‐west European land snail species within the same biotic element indicates that speciation modes other than vicariance were frequent or that the imprint of vicariance on the ranges was obscured by extensive post‐speciational dispersal. Extensive dispersal may have been caused by Pleistocene climatic fluctuations. The core areas of the regionally restricted biotic elements might indicate the positions of glacial refugia of land snails.  相似文献   

16.
Aim To investigate the importance of vicariance in shaping land snail faunas. Location Three data sets of Mediterranean land snails were analysed: Helicoidea of the Iberian Peninsula and the complete land snail faunas of the central and eastern Aegean Islands and of Israel and Palestine. Methods The vicariance model predicts a clustering of species ranges. We tested for clustering of species ranges with a Monte Carlo simulation. For this simulation we used a null model that generates range data sets in such a way that their range size distribution, their species richness distribution and the spatial autocorrelation of the ranges approximate the parameters in the real data set. Biotic elements (clusters of species ranges) were delimited with model‐based Gaussian clustering. A second prediction of the vicariance model is that closely related species belong to different biotic elements. This was tested with a chi‐squared test. Results The distribution areas of the Iberian Helicoidea and the Israeli/Palestinian land snails are significantly clustered. The same is true for Israeli/Palestinian land snail species belonging to groups with geographically restricted species. However, the clustering is not significant in the complete central and eastern Aegean land snail data set, the Iberian Helicoidea species, and the central and eastern Aegean land snails belonging to groups with geographically restricted species. Contrary to the prediction of the vicariance model, closely related Iberian Helicoidea species and Israeli/Palestinian land snails belong significantly more often to the same biotic element than expected by chance. The null hypothesis that closely related species are homogeneously distributed across biotic elements cannot be rejected only for the data set that includes the Israeli/Palestinian land snails belonging to groups with geographically restricted species. Main conclusions The patterns found in the central and eastern Aegean land snail and the Iberian Helicoidea data sets do not correspond with the predictions of the vicariance model. This indicates that speciation modes other than vicariance were frequent, or that the distribution areas of many species in these faunas were largely modified by extensive post‐speciation dispersal and/or regional extinction. Hardly any possible vicariance events that might have contributed to the origin of the observed biotic elements in the Israeli/Palestinian land snail fauna could be identified. On the contrary, the biotic elements of the Israeli/Palestinian land snail fauna correspond with ecological factors. Vicariance has had only a limited influence on current biogeographical patterns in Mediterranean land snails.  相似文献   

17.
The Balkan Peninsula is one of three major European refugial areas. It has high biodiversity and endemism, but data on the age and origin of its fauna, especially endemics, are limited. Mitochondrial sequence data (COI and 16S genes) were used to study the population structure and phylogeography of the caddisfly Drusus croaticus and the phylogeny and divergence of seven other Drusus species, mostly range-restricted endemics of the Dinaric region of the Balkan Peninsula. The divergence of D. croaticus populations in Croatia and allopatric Drusus species in Bosnia dated to the Pleistocene, showing the importance of this time period for the origin and diversification of Balkan endemic taxa. The divergence of more distantly related species dated to the Late Miocene/Early Pliocene. Population genetic and phylogeographic analysis of 115 individuals from 11 populations of D. croaticus revealed a high level of genetic differentiation and absence of gene flow between populations separated by more than 10 km. The existence of allopatrically fragmented lineages in D. croaticus and the endemic Bosnian species is most likely the result of long-term isolation in multiple microrefugia, probably due to the specific habitat requirements and life-history traits of Drusinae coupled with the topographic complexity and historical changes in geomorphology of the region. Overall, these findings shed light on the processes generating the high genetic complexity of this refugial region that parallels the 'refugia within refugia' pattern widely reported from the Iberian refugium.  相似文献   

18.
Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape.  相似文献   

19.
Aim We investigated the roles of lithology and climate in constraining the ranges of four co‐distributed species of Iberian saline‐habitat specialist water beetles (Ochthebius glaber, Ochthebius notabilis, Enochrus falcarius and Nebrioporus baeticus) across the late Quaternary and in shaping their geographical genetic structure. The aim was to improve our understanding of the effects of past climate changes on the biota of arid Mediterranean environments and of the relative importance of history and landscape on phylogeographical patterns. Location Iberian Peninsula, Mediterranean. Methods We combined species distribution modelling (SDM) and comparative phylogeography. We used a multi‐model inference and model‐averaging approach both for assessment of range determinants (climate and lithology) and for provision of spatially explicit estimates of the species current and Last Glacial Maximum (LGM) potential ranges. Potential LGM distributions were then contrasted with the phylogeographical and population expansion patterns as assessed using mitochondrial DNA sequence data. We also evaluated the relative importance of geographical distance, habitat resistance and historical isolation for genetic structure in a causal modelling framework. Results Lithology poses a strong constraint on the distribution of Iberian saline‐habitat specialist water beetles, with a variable, but generally moderate, additional influence by climate. The degree to which potential LGM distributions were reduced and fragmented decreased with increasing importance of lithology. These SDM‐based suitability predictions were mostly congruent with phylogeographical and population genetic patterns across the study species, with stronger geographical structure in the genetic diversity of the more temperature‐sensitive species (O. glaber and E. falcarius). Furthermore, while historical isolation was the only factor explaining genetic structure in the more temperature‐sensitive species, lithology‐controlled landscape configuration also played an important role for those species with more lithology‐determined ranges (O. notabilis and N. baeticus). Main conclusions Our data show that lithology is an important constraint on the distribution and range dynamics of endemic Iberian saline‐habitat water beetles, in interaction with climate and long‐term climate change, and overrides the latter in importance for some species. Hence, geological landscape structure and long‐term history may codetermine the overall range and the distribution of genetic lineages in endemic species with specialized edaphic requirements.  相似文献   

20.
Apte S  Smith PJ  Wallis GP 《Molecular ecology》2007,16(9):1897-1908
Tectonic movement at the boundary of the Indo-Australian and Pacific Plates during the Miocene and Pliocene is recognized as a driving force for invertebrate speciation in New Zealand. Two endemic freshwater crayfish (koura) species, Paranephrops planifrons White 1842 and Paranephrops zealandicus White 1842, represent good model taxa to test geological hypotheses because, due to their low dispersal capacity and life history, geographical restriction of populations may be caused by vicariant processes. Analysis of a mitochondrial DNA marker (cytochrome oxidase subunit I) reveals not two, but three major koura lineages. Contrary to expectation, the cryptic West Coast group appears to be more closely related to P. zealandicus than to P. planifrons and has diverged earlier than the final development (Late Pleistocene) of Cook Strait. Our date estimates suggest that koura lineage diversification probably coincided with early to mid-Alpine orogeny in the mid-Pliocene. Estimates of node ages and the phylogenies are inconsistent with both ancient Oligocene and recent postglacial Pleistocene range expansion, but suggest central to north colonization of North Island and west to east movement in South Island during mid- to late Pliocene. Crypsis and paraphyly of the West Coast group suggest that morphological characters presently used to classify koura species could be misleading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号