首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

2.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

3.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

4.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

5.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

6.
Mutations in respiratory chain complexes and human diseases   总被引:3,自引:0,他引:3  
Literary evidence for a link between mutations in genes encoding respiratory chain components and human disorders is reviewed with particular emphasis on defects in respiratory complexes III and IV and their assembly factors. To date, mutations in genes encoding cytochrome band QP-C structural subunits of cytochrome bc1 complex; the BCS1L assembly factor for the bc1 complex; structural subunits I-III of cytochrome c oxidase; as well as the SURF-1, COX10, SCO1, and SCO2 assembly factors for cytochrome c oxidase, have been reported. These mutations are responsible for different neuromuscular and non-neuromuscular human diseases.  相似文献   

7.
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 approximately 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.  相似文献   

8.
T Cocco  G Cutecchia  B Ludwig  M Korn  S Papa  M Lorusso 《Biochemistry》2001,40(50):15396-15402
A study is presented on chemical modification of the three subunit Paracoccus denitrificans bc(1) complex. N-(Ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) treatment caused a loss of the proton pumping activity of liposome-reconstituted bc(1) complex. A similar effect, which is referred to as the decoupling effect, resulted upon reaction of N,N'-dicyclohexylcarbodiimide (DCCD) with the complex. Direct measurement of the binding of EEDQ to the complex subunits, performed in the presence of the fluorescent hydrophobic nucleophile 4'-[(aminoacetamido)methyl]fluorescein (AMF), showed that the iron-sulfur protein (ISP) and cytochrome c(1) were labeled by EEDQ, whereas cytochrome b was not. Tryptic digestion and sequencing analysis of the fluorescent fragment of the ISP revealed this to consist of a segment with six acidic residues, among which the highly conserved aspartate 160 is present. Analogous experiments on DCCD binding showed that all the three subunits of the complex were labeled. However, DCCD concentration dependence of carboxyl residue modification in the individual subunits and of proton pumping activity showed that the decrease of the H(+)/e(-) ratio correlated only with the modification of the ISP. Tryptic digestion of labeled ISP and sequencing analysis of the fluorescent fragment gave results superimposable upon those obtained with EEDQ. Chymotryptic digestion and sequencing analysis of the single fluorescent fragment of cytochrome b showed that this fragment contained glutamate 174 and aspartate 187. We conclude that, in the P. denitrificans bc(1) complex, carboxyl residues in cytochrome b do not appear to be critically involved in the proton pump mechanism of the complex.  相似文献   

9.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

10.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

11.
12.
The cytochrome bc1 complex of the yeast Saccharomyces cerevisiae is composed of 10 different subunits that are assembled as a symmetrical dimer in the inner mitochondrial membrane. Three of the subunits contain redox centers and participate in catalysis, whereas little is known about the function of the seven supernumerary subunits. To gain further insight into the function of the supernumerary subunits in the assembly process, we have examined the subunit composition of mitochondrial membranes isolated from yeast mutants in which the genes for supernumerary subunits and cytochrome b were deleted and from yeast mutants containing double deletions of supernumerary subunits. Deletion of any one of the genes encoding cytochrome b, subunit 7 or subunit 8 caused the loss of the other two subunits. This is consistent with the crystal structure of the cytochrome bc1 complex that shows that these three subunits comprise its core, around which the remaining subunits are assembled. Absence of the cytochrome b/subunit 7/subunit 8 core led to the loss of subunit 6, whereas cytochrome c1, iron-sulfur protein, core protein 1, core protein 2 and subunit 9 were still assembled in the membrane, although in reduced amounts. Parallel changes in the amounts of core protein 1 and core protein 2 in the mitochondrial membranes of all of the deletion mutants suggest that these can be assembled as a subcomplex in the mitochondrial membrane, independent of the presence of any other subunits. Likewise, evidence of interactions between subunit 6, subunit 9 and cytochrome c1 suggests that a subcomplex between these two supernumerary subunits and the cytochrome might exist.  相似文献   

13.
In this work, the genes for cytochrome aa3 oxidase and the cytochrome bc1 complex in the gram-positive soil bacterium Corynebacterium glutamicum were identified. The monocistronic ctaD gene encoded a 65-kDa protein with all features typical for subunit I of cytochrome aa3 oxidases. A ctaD deletion mutant lacked the characteristic 600 nm peak in redox difference spectra, and growth in glucose minimal medium was strongly impaired. The genes encoding subunit III of cytochrome aa3 (ctaE) and the three characteristic subunits of the cytochrome bc1 complex (qcrABC) were clustered in the order ctaE-qcrCAB. Analysis of the deduced primary structures revealed a number of unusual features: (1) cytochrome c1 (QcrC, 30 kDa) contained two Cys-X-X-Cys-His motifs for covalent heme attachment, indicating that it is a diheme c-type cytochrome; (2) the 'Rieske' iron-sulphur protein (QcrA, 45 kDa) contained three putative transmembrane helices in the N-terminal region rather than only one; and (3) cytochrome b (QcrB, 60 kDa) contained, in addition to the conserved part with eight transmembrane helices, a C-terminal extension of about 120 amino acids, which presumably is located in the cytoplasm. Staining of C. glutamicum proteins for covalently bound heme indicated the presence of a single, membrane-bound c-type cytochrome with an apparent molecular mass of about 31 kDa. Since this protein was missing in a qcrCAB deletion mutant, it most likely corresponds to cytochrome c1. Similar to the deltactaD mutant, the deltaqcrCAB mutant showed strongly impaired growth in glucose minimal medium, which indicates that the bc1-aa3 pathway is the main route of respiration under these conditions.  相似文献   

14.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

15.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

16.
Spheroplasts from aerobically grown wild-type Paracoccus denitrificans cells respire with succinate despite specific inhibition of the cytochrome bc1 complex by myxothiazol. Coupled to this activity, which involves only b-type cytochromes, there is translocation of 1.5-1.9 h+/e- across the cytoplasmic membrane. Similar H+ translocation ratios are observed during oxidation of ubiquinol in spheroplasts from aerobically grown mutants of Paracoccus lacking cytochrome c oxidase, or deficient in cytochrome c, as well as in a strain of E. coli from which cytochrome d was deleted. These observations show that the cytochrome o complex is a proton pump much like cytochrome aa3 to which it is structurally related.  相似文献   

17.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

18.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc(1) complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc(1) subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc(1) complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c(1) carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c(552), mediating electron transfer to the ba(3) oxidase. Identification of this cytochrome bc(1) complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

19.
20.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号