首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seprase is a homodimeric 170-kDa integral membrane gelatinase that is related to the ectoenzyme dipeptidyl peptidase IV. We have identified an alternatively spliced seprase messenger from the human melanoma cell line LOX that encodes a novel truncated isoform, seprase-s. The splice variant mRNA is generated by an out-of-frame deletion of a 1223-base pair exonic region that encodes part of the cytoplasmic tail, transmembrane, and the membrane proximal-central regions of the extracellular domain (Val(5) through Ser(412)) of the seprase 97-kDa subunit (seprase-l). The seprase-s mRNA has an elongated 5' leader (548 nucleotides) that harbors at least two upstream open reading frames that inhibit seprase-s expression from a downstream major open reading frame. Deletion mutagenesis of the wild type splice variant cDNA confirms that initiation of the seprase-s coding sequence begins with an ATG codon that corresponds to Met(522) of seprase-l. The seprase-s open reading frame encodes a 239-amino acid polypeptide with an M(r) approximately 27,000 that precisely overlaps the carboxyl-terminal catalytic region of seprase-l.  相似文献   

3.
Kato M  Yano K  Morotomi-Yano K  Saito H  Miki Y 《Genomics》2002,79(6):760-767
Although the centrosome has an essential role in mitosis, its molecular components have not been fully elucidated. Here, we describe the molecular cloning and characterization of the human gene NTKL, which encodes an evolutionarily conserved kinase-like protein. NTKL mRNA is found ubiquitously in human tissues. NTKL is located on 11q13 and is mapped around chromosomal breakpoints found in several carcinomas, suggesting that NTKL dysfunction may be involved in carcinogenesis. Alternative splicing generates two variant forms of NTKL mRNA that encode protein isoforms with internal deletions. When fused to green fluorescent protein, the full-length product and one of the variant proteins are found in cytoplasm. The other variant product also exists in the cytoplasm during interphase, but is found in the centrosomes during mitosis. Endogenous NTKL protein is also localized to the centrosomes during mitosis. This cell-cycle-dependent centrosomal localization suggests that NTKL is involved in centrosome-related cellular functions.  相似文献   

4.
5.
6.
《The Journal of cell biology》1986,103(6):2637-2647
We have compared the molecular specificities of the adhesive interactions of melanoma and fibroblastic cells with fibronectin. Several striking differences were found in the sensitivity of the two cell types to inhibition by a series of synthetic peptides modeled on the Arg-Gly-Asp-Ser (RGDS) tetrapeptide adhesion signal. Further evidence for differences between the melanoma and fibroblastic cell adhesion systems was obtained by examining adhesion to proteolytic fragments of fibronectin. Fibroblastic BHK cells spread readily on fl3, a 75-kD fragment representing the RGDS-containing, "cell-binding" domain of fibronectin, but B16-F10 melanoma cells could not. The melanoma cells were able to spread instead on f9, a 113-kD fragment derived from the large subunit of fibronectin that contains at least part of the type III connecting segment difference region (or "V" region); f7, a fragment from the small fibronectin subunit that lacks this alternatively spliced polypeptide was inactive. Monoclonal antibody and fl3 inhibition experiments confirmed the inability of the melanoma cells to use the RGDS sequence; neither molecule affected melanoma cell spreading, but both completely abrogated fibroblast adhesion. By systematic analysis of a series of six overlapping synthetic peptides spanning the entire type III connecting segment, a novel attachment site was identified in a peptide near the COOH- terminus of this region. The tetrapeptide sequence Arg-Glu-Asp-Val (REDV), which is somewhat related to RGDS, was present in this peptide in a highly hydrophilic region of the type III connecting segment. REDV appeared to be functionally important, since this synthetic tetrapeptide was inhibitory for melanoma cell adhesion to fibronectin but was inactive for fibroblastic cell adhesion. REDV therefore represents a novel adhesive recognition signal in fibronectin that possesses cell type specificity. These results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.  相似文献   

7.
8.
9.
Human phospholipid scramblase 1 (SCR) is a 318 amino acid protein that was originally described as catalyzing phospholipid transbilayer (flip-flop) motion in plasma membranes in a Ca2+-dependent, ATP-independent way. Further studies have suggested an intranuclear role for this protein in addition. A putative transmembrane domain located at the C terminus (aa 291–309) has been related to the flip-flop catalysis. In order to clarify the role of the C-terminal region of SCR, a mutant was produced (SCRΔ) in which the last 28 amino acid residues were lacking, including the α-helix. SCRΔ had lost the scramblase activity and its affinity for Ca2+ was decreased by one order of magnitude. Fluorescence and IR spectroscopic studies revealed that the C-terminal region of SCR was essential for the proper folding of the protein. Moreover, it was found that Ca2+ exerted an overall destabilizing effect on SCR, which might facilitate its binding to membranes.  相似文献   

10.
Angiopoietin-2 (Ang2) is a naturally occurring antagonist of angiopoietin-1 (Ang1) that competes for binding to the Tie2 receptor and blocks Ang1-induced Tie2 autophosphorylation during vasculogenesis. Using the polymerase chain reaction, we isolated a cDNA encoding a novel shorter form of Ang2 from human umbilical vein endothelial cell cDNA and have designated it angiopoietin-2(443) (Ang2(443)), because it contains 443 amino acids. Part of the coiled-coil domain (amino acids 96-148) is absent in Ang2(443) because of alternative splicing of the gene. Like Ang2, recombinant Ang2(443) expressed in COS-7 cells is secreted as a glycosylated homodimeric protein. Recombinant Ang2(443) binds to the Tie2 receptor but does not induce Tie2 phosphorylation. Pre-occupation of Ang2(443) on Tie2 inhibits Ang1 or Ang2 binding and inhibits Ang1-induced phosphorylation. Expression of Ang2(443) mRNA is detectable in primary endothelial cells, several nonendothelial tumor cell lines, and primary tumor tissues. Interestingly, two cervical carcinoma cell lines express relatively moderate levels of Ang2(443) mRNA and protein. Macrophages express mainly Ang2 mRNA, but the expression of Ang2(443) mRNA is temporarily up-regulated during macrophage differentiation. These results suggest that Ang2(443) is a functional antagonist of Ang1 and could be an important regulator of angiogenesis during some tumorigenic and inflammatory processes.  相似文献   

11.
Signal transduction cascades involving Rho-associated kinases (ROCK), the serine/threonine kinases downstream effectors of Rho, have been implicated in the regulation of diverse cellular functions including cytoskeletal organization, cell size control, modulation of gene expression, differentiation, and transformation. Here we show that ROCK2, the predominant ROCK isoform in skeletal muscle, is progressively up-regulated during mouse myoblast differentiation and is highly expressed in the dermomyotome and muscle precursor cells of mouse embryos. We identify a novel and evolutionarily conserved ROCK2 splicing variant, ROCK2m, that is preferentially expressed in skeletal muscle and strongly up-regulated during in vivo and in vitro differentiation processes. The specific knockdown of ROCK2 or ROCK2m expression in C2C12 myogenic cells caused a significant and selective impairment of the expression of desmin and of the myogenic regulatory factors Mrf4 and MyoD. We demonstrate that in myogenic cells, ROCK2 and ROCK2m are positive regulators of the p42 and p44 mitogen-activated protein kinase-p90 ribosomal S6 kinase-eucaryotic elongation factor 2 intracellular signaling pathways and, thereby, positively regulate the hypertrophic effect elicited by insulin-like growth factor 1 and insulin, linking the multifactorial functions of ROCK to an important control of the myogenic maturation.  相似文献   

12.
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.  相似文献   

13.
14.
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the nonspliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells [X. Ma, S. Kawamoto, J. Uribe, R.S. Adelstein, Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development, Mol. Biol. Cell 15 (2006) 2138-2149]. In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acid II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific.  相似文献   

15.
16.
17.
18.
Heparanase is an endoglycosidase that cleaves heparan sulfate in the extracellular matrix (ECM) and hence participates in ECM degradation and remodeling. Heparanase is involved in fundamental biological processes such as cancer metastasis, angiogenesis, and inflammation. Alternative splicing in the coding region of human heparanase was not reported. Here, we report the cloning of a splice variant of human heparanase that lacks exon 5 and is missing 174 bp compared to the wild-type cDNA. Splice 5 is expressed as a 55 kDa protein compared to the 65 and 50 kDa latent and active wild-type enzyme. Splice 5 was not detected in the incubation medium of tumor cells as opposed to the wild-type latent heparanase. Splice 5 escaped proteolytic cleavage, was devoid of HS degradation activity and exhibited diffused rather than granular cellular localization.  相似文献   

19.
Iida K  Akashi H 《Gene》2000,261(1):93-105
Natural selection appears to discriminate among synonymous codons to enhance translational efficiency in a wide range of prokaryotes and eukaryotes. Codon bias is strongly related to gene expression levels in these species. In addition, between-gene variation in silent DNA divergence is inversely correlated with codon bias. However, in mammals, between-gene comparisons are complicated by distinctive nucleotide-content bias (isochores) throughout the genome. In this study, we attempted to identify translational selection by analyzing the DNA sequences of alternatively spliced genes in humans and in Drosophila melanogaster. Among codons in an alternatively spliced gene, those in constitutively expressed exons are translated more often than those in alternatively spliced exons. Thus, translational selection should act more strongly to bias codon usage and reduce silent divergence in constitutive than in alternative exons. By controlling for regional forces affecting base-composition evolution, this within-gene comparison makes it possible to detect codon selection at synonymous sites in mammals. We found that GC-ending codons are more abundant in constitutive than alternatively spliced exons in both Drosophila and humans. Contrary to our expectation, however, silent DNA divergence between mammalian species is higher in constitutive than in alternative exons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号