首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
When a recA strain of Escherichia coli was transformed with the multicopy plasmid pSF11 carrying the uvrA gene of E. coli, its extreme ultraviolet (UV) sensitivity was decreased. The sensitivity of the lexA1 (Ind(-)) strain to UV was also decreased by pSF11. The recA cells expressing Neurospora crassa UV damage endonuclease (UVDE), encoding UV-endonuclease, show UV resistance. On the other hand, only partial amelioration of UV sensitivity of the recA strain was observed in the presence of the plasmid pNP10 carrying the uvrB gene. Host cell reactivation of UV-irradiated lambda phage in recA cells with pSF11 was as efficient as that in wild-type cells. Using an antibody to detect cyclobutane pyrimidine dimers, we found that UV-irradiated recA cells removed dimers from their DNA more rapidly if they carried pSF11 than if they carried a vacant control plasmid. Using anti-UvrA antibody, we observed that the expression level of UvrA protein was about 20-fold higher in the recA strain with pSF11 than in the recA strain without pSF11. Our results were consistent with the idea that constitutive level of UvrA protein in the recA cells results in constitutive levels of active UvrABC nuclease which is not enough to operate full nucleotide excision repair (NER), thus leading to extreme UV sensitivity.  相似文献   

3.
Summary Host cell reactivation and UV reactivation and mutagenesis of UV-irradiated phage were measured in tsl recA + and tsl recA host mutants. Host cell reactivation was slightly more efficient in the tsl recA strain compared to the tsl + recA strain. Phage was UV-reactivated in the tsl recA strain with about one-half the efficiency of that in the wild type strain, but there was no corresponding mutagenesis of phage. UV-reactivation was also slightly lower and mutagenesis several-fold lower than normal in the tsl recA + strain. To account for these observations, we propose that there is an inducible, error-free pathway of DNA repair in E. coli that competes with error-prone repair for repair of phage lesions.  相似文献   

4.
Inducible UV repair potential of Pseudomonas aeruginosa PAO   总被引:5,自引:0,他引:5  
Pseudomonas aeruginosa PAO lacks UV-inducible Weigle reactivation and Weigle mutagenesis of UV-damaged bacteriophages. This lack of UV-inducible, error-prone DNA repair appears to be due to the absence of efficiently expressed umuDC-like genes in this species. When the P. aeruginosa recA gene is introduced into a recA(Def) mutant of Escherichia coli K12, the P. aeruginosa recA gene product is capable of mediating UV-induced mutagenesis, indicating that it could participate in a recA-lexA-like regulatory network and function in inducible DNA repair pathways if such existed in P. aeruginosa. The presence of the IncP9, UV-resistance plasmid R2 in RecA+ strains of P. aeruginosa PAO allows UV-inducible, mutagenic DNA repair of UV-irradiated bacteriophages. R2 also greatly stimulates the ability of UV radiation to induce mutagenesis of the bacterial chromosome. When R2 is introduced into P. aeruginosa strains containing either the recA908 or recA102 mutation, plasmid-mediated UV resistance and Weigle reactivation are not observed. These observations suggest that the increased protection afforded to P. aeruginosa by R2 is derived from a RecA-mediated, DNA-damage-inducible, error-prone DNA repair system which complements the lack of a chromosomally encoded umuDC-like operon.  相似文献   

5.
It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a). In this work, we observed that an increase of UV-resistance by pKY1 in the dark is not apparent in strains with a mutation in either uvrA, uvrB, uvrC, lexA, recBC or recF. The sensitivity of recA lexA and recA recBC multiple mutants to UV is suppressed by the plasmid but that of recA uvrA, recA uvrB and recA uvrC is not. Host-cell reactivation of UV-irradiated lambda phage is slightly more efficient in the recA/pKY1 strain compared with the parental recA strain. On the other hand, the recA and recA/pKY1 strains do not differ significantly in the following properties: Hfr recombination, induction of lambda by UV, and mutagenesis. We suggest that dark repair of PRE is correlated with its capacity of excision repair.  相似文献   

6.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

7.
J Das  J A Nowak    J Maniloff 《Journal of bacteriology》1977,129(3):1424-1427
The mycoplasma Acholeplasma laidlawii was shown to have mechanisms for both host cell and ultraviolet (UV) reactivation of UV-irradiated mycoplasmaviruses. Host cell reactivation was examined by comparing the survival abilities of UV-irradiated double-stranded deoxyribonucleic acid mycoplasmavirus plated on both untreated and on acriflavine-treated cells. Acriflavine treatment inhibited cell exision repair. Decreased survival on the acriflavine-treated cells demonstrated host cell reactivation. UV reactivation was studied by comparing the survival of UV-irradiated virus plated on untreated cells with its survival on cells that received a small UV dose before plating. The UV-irradiated cells gave increased virus survival, showing UV reactivation. Similar experiments with a single-stranded deoxyribonucleic acid mycoplasmavirus showed that this virus could be UV reactivated, but not host cell reactivated.  相似文献   

8.
The kinetics of induction of the UV-irradiated bacteriophage VP5 (Weigle reactivation) in Streptomyces coelicolor A3(2) strains with and without plasmid was investigated. Chloramphenicol (CAF) inhibits Weigle reactivation (WR) in UF strains (SCP1 absent) but not in SCP1+ strains of IF fertility (free plasmid). CAF, moreover, inhibits protein synthesis in non-irradiated UF and IF strains. In UV-irradiated IF strains, on the other hand, protein synthesis takes place irrespective of CAF. Weigle reactivation appears to require protein synthesis: the SCP1 plasmid, by protecting protein synthesis from CAF inhibition in UV-irradiated strains, allows WR. The proteins synthesized after UV induction during the pre-incubation period were investigated and the results suggest that a new UV-induced protein, coded by a gene localized on the plasmid, interacts with the cellular SOS system.  相似文献   

9.
A simple and reliable quantitative assay for measuring cellular DNA repair capacity has been developed. It is based on the host cell reactivation of the UV-irradiated plasmid pEGFP carrying the marker gene for the enhanced green fluorescent protein (EGFP). As a reference we used the plasmid pEYFP carrying the gene for a red-shifted fluorescent protein (EYFP). Both proteins can be excited by visible light with a maximum at 488 nm, but EGFP emits with a maximum at 509 nm, while EYFP emits with a maximum at 527 nm. This makes it possible to monitor the expression of the two genes simultaneously by measuring the fluorescence at two wavelengths. HEK293 cells were cotransfected with a mixture of UV-irradiated pEGFP and undamaged pEYFP. At different time intervals after transfection the fluorescence of EGFP was determined relative to the fluorescence of EYFP to compensate for any differences in the transfection efficiency or other experimental variables. It was used to calculate the number of UV lesions in DNA and hence the repair capacity of the host cells. It was found that HEK293 cells were able to repair approximately 1.4 UV lesions per 1000 nucleotides DNA for 12 h on the average.  相似文献   

10.
11.
Weigle reactivation of ultraviolet-irradiated luminal diameter 8 bacteriophage was observed after ultraviolet treatment of Bacillus thuringiensis cells. A slight increased frequency of clear plaque mutants was detected among the survivors. The kinetics of induction of the phage reactivation and phage mutagenesis have been determined. The presence of chloramphenicol before and after irradiation abolished the induction of repair and mutagenesis. These experiments suggest that, in spite of the relatively small mutagenic response in bacteriophage progeny, B. thuringiensis has an inducible repair system responsible to the significant Weigle reactivation of irradiated phage.  相似文献   

12.
13.
Endonuclease V of bacteriophage T4 possesses two enzymatic activities, a DNA N-glycosylase specific for cyclobutane pyrimidine dimers (CBPD) and an associated apurinic/apyrimidinic (AP) lyase. Extensive structural and functional studies of endonuclease V have revealed that specific amino acids are associated with these two activities. Controversy still exists regarding the role of the aromatic amino acid stretch close to the carboxyl terminus, in particular the tryptophan at position 128. We have expressed wild-type and mutant W128S endonuclease V in Escherichia coli from an inducible tac promoter. Purified W128S endonuclease V demonstrated substantially decreased N-glycosylase (approximately 5-fold) and AP lyase (10- to 20-fold) activities in vitro compared to the wild-type enzyme when a UV-irradiated poly(dA)-poly(dT) substrate was used. However, a much smaller difference in AP lyase activity between the two forms was observed with a site-specific abasic oligonucleotide. The difference in enzymatic activity was qualitatively, but not quantitatively, reflected in the survival of UV-irradiated bacteria, that is the W128S cells were slightly less UV resistant than wild-type cells. No difference was observed in the complementation of UV repair using UV-damaged denV- T4 phage. A more pronounced difference between the wild-type and W128S proteins was observed in human xeroderma pigmentosum group A cells by host-cell reactivation of a UV-irradiated reporter gene. The relatively large discrepancy between the in vitro and in vivo results observed with bacteria may be because saturated levels of DNA repair are obtained in vivo with relatively low levels of endonuclease V. However, under limiting in vitro conditions and in human cells in vivo a considerable difference between the W128S mutant and wild-type endonuclease V activities can be detected. Our results demonstrate that tryptophan-128 is important for endonuclease V activity.  相似文献   

14.
Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode.  相似文献   

15.
The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus.  相似文献   

16.
UV-inducible DNA repair in the cyanobacteria Anabaena spp.   总被引:2,自引:0,他引:2       下载免费PDF全文
Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.  相似文献   

17.
The survival of UV-irradiated simian virus 40 (SV40) is higher in UV-irradiated than in non-irradiated monolayers of BSC-1 monkey cells. A similar reactivation is found when cells are infected with SV40-DNA, suggesting that reactivation acts on viral DNA. The enhanced reactivation of UV-irradiated SV40 and SV40-DNA is optimal when infection is delayed for 2–3 days after irradiation of the cells.UV-pretreated cells infected with SV40-DNA produce more virus than infected control cells; the time curve of this process is similar to that found for enhanced virus reactivation and suggests that facilitated virus production in UV-irradiated cells and enhanced virus reactivation might be manifestations of the same process.If the non-irradiated SV40 thermosensitive mutant BC245 is propagated in UV-irradiated BSC-1 cells the rate of back mutation to phenotypically wild-type is increased compared with that of the control. This suggests that an inducible error-prone system is functional in these cells. When the UV-irradiated tsBC245 is propagated in non-irradiated cells the reversion frequency is greatly enhanced, which suggests that either the introduction of UV-irradiated SV40-DNA is sufficient to induce an error-generating system, or that a constitutive error-prone mechanism is operative on this DNA.  相似文献   

18.
The UV-irradiated plasmid pBSCATSV, which could express chloramphenicol acetyltransferase (CAT) in the presence of SV40 early promoter, was transfected into RBCF-1 cells derived from the goldfish (Carassius auratus). The cells were incubated in the dark for 24 h and then the CAT activity was measured. CAT expression relative to non-irradiated control was calculated. The CAT expression of the exponentially growing cells transfected with UV-irradiated plasmid was enhanced by fluorescent light (FL) preillumination of the cells 8 h before transfection. The efficiency of photorepair (PR) measured by CAT expression was also enhanced by the same FL preillumination. This suggests that FL preillumination enhances both photorepair and dark repair of RBCF-1 cells for UV-damaged plasmid transfected into the cells. The enhancement of repair of UV damage by FL preillumination was also observed in survival assays. When the UV-irradiated pBSCATSV was transfected into growth-arrested cells in confluent culture, CAT expression was less sensitive to UV irradiation, and FL preillumination was much less effective in enhancing photorepair and dark repair.  相似文献   

19.
Competent Bacillus subtilis were investigated for their ability to support the repair of UV-irradiated bacteriophage and bacteriophage DNA. UV-irradiated bacteriophage DNA cannot be repaired to the same level as UV-irradiated bacteriophage, suggesting a deficiency in the ability of competent cells to repair UV damage. However, competent cells were as repair proficient as noncompetent cells in their ability to repair irradiated bacteriophage in marker rescue experiments. The increased sensitivity of irradiated DNA is shown to be due to the inability of excision repair to function on transfecting DNA in competent bacteria. Furthermore, competent cells show no evidence of possessing an inducible BsuR restriction system to complement their inducible BsuR modification enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号