首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We acquired double-quantum-filtered 23Na NMR spectra from perfused liver, using a range of tau values from 0.2 to 24 ms, where tau is the separation between the first and second pi/2 pulses in the radio-frequency pulse sequence. For each tau value we compared the amplitude of the double-quantum-filtered 23Na NMR signal acquired from intracellular sodium ions when the liver was perfused with buffer containing the "shift reagent" Dy(PPP)2 to the amplitude of the total double-quantum-filtered 23Na NMR signal acquired when the liver was perfused with buffer containing no Dy(PPP)2. For tau < or = 4 ms, the average ratio of the two amplitudes was 0.98 +/- 0.03 (mean +/- SEM). For tau > or = 8 ms, the average ratio was significantly less than 1. These results demonstrate that double-quantum-filtered 23Na NMR signals acquired from perfused liver using short tau values arise almost exclusively from intracellular sodium ions, but double-quantum-filtered 23Na NMR signals acquired from perfused liver using long tau values contain contributions from both intracellular and extracellular sodium ions. This conclusion suggests that multiple-quantum-filtered 23Na NMR spectroscopy will be useful in studying intracellular sodium levels in the perfused liver, and possibly in the intact liver in vivo.  相似文献   

2.
The local cation concentration at the surface of oligomeric or polymeric B-DNA is expected, on the basis of MC simulations (Olmsted, M. C., C. F. Anderson, and M. T. Record, Jr. 1989. Proc. Natl. Acad. Sci. USA. 86:7766-7770), to decrease sharply as either end of the molecule is approached. In this paper we report 23Na NMR measurements indicating the importance of this "coulombic" end effect on the average extent of association of Na+ with oligomeric duplex DNA. In solutions containing either 20-bp synthetic DNA or 160-bp mononucleosomal calf thymus DNA at phosphate monomer concentrations [P] of 4-10 mM, measurements were made over the range of ratios 1 < or = [Na]/[LP] < or = 20, corresponding to Na+ concentrations of 4-200 nM. The longitudinal 23Na NMR relaxation rates measured in these NaDNA solutions, Robs, are interpreted as population-weighted averages of contributions from "bound" (RB) and "free" (RF) 23Na relaxation rates. The observed enhancements of Robs indicate that RB significantly exceeds RF, which is approximately equal to the 23Na relaxation rate in an aqueous solution containing only NaCl. Under salt-fre-tconditions ([Na]/[P] = 1), where the enhancement in Robs is maximal, we find that Robs--RF in the solution containing 160-bp DNA is approximately 1.8 times that observed for the 20-bp DNA. For the 160-bp oligomer (which theoretical calculations predict to be effectively polyion-like), we find that a plot of Robs v. [P]/[Na] is linear, as observed previously for sonicated (approximately 700 bp) DNA samples. For the 20-bp oligonucleotide this plot exhibits a marked departure from linearity that can be fitted to a quadratic function of [P]/[Na]. Monte Carlo simulations based on a simplified model are capable of reproducing the qualitative trends in the 23Na NMR measurements analyzed here. In particular, the dependences of Robs--RF on DNA charge magnitude of Z(320 vs. 38 phosphates) and (for the 20-bp oligomer) on [Na]/[P] are well correlated with the calculated average surface concentration of Na+. Thus, effects of sodium concentration on RB appear to be of secondary importance. We conclude that 23Na NMR relaxation measurements are a sensitive probe of the effects of oligomer charge on the extent of ion accumulation near B-DNA oligonucleotides, as a function of [Na] and [P].  相似文献   

3.
23Na NMR studies of rat outer medullary kidney tubules   总被引:2,自引:0,他引:2  
Two reservations have previously made interpretation of biological 23Na NMR measurements difficult: the "size" of the extracellular space penetrated by the shift reagent and the possibility of a 60% reduction in the intensity of the NMR-visible 23Na signal due to quadrupolar interactions (Berendsen, H. J. C., and Edzes, H. T. (1973) Ann. N. Y. Acad. Sci. 204, 459-485; Civan, M. M., Degani, H., Margalit, Y., and Shporer, M. (1983) Am. J. Physiol. 245, C213-C219; Gupta, R. K., and Gupta, P. (1982) J. Magn. Reson. 47, 344-350). We have addressed both these issues using a suspension of rat outer medullary kidney tubules, nephron segments responsible for the fine control of total body volume and electrolyte balance. First, the extracellular space penetrated by the shift reagent dysprosium tripolyphosphate, as defined by the extracellular 23Na resonance, revealed a space similar to that which contained extracellular 35Cl- ions. Measurement of an extracellular 35Cl- space using 35Cl NMR was possible because the intracellular 35Cl- resonance was broadened beyond detection in the cells studied. Second, to characterize the reduction of the 23Na signal by quadrupolar interactions, the intracellular 23Na level was raised artificially by simultaneously inhibiting Na+ efflux and increasing the ion permeability of the plasma membrane. Under these conditions, NMR-observable intracellular Na+ reached a level which was approximately 81% of that in the medium, a level determined using chemical techniques. This observation would suggest that the resonance of the intracellular 23Na pool was not subject to a 60% reduction in signal intensity, as a result of nuclear quadrupolar interaction. The intracellular 23Na level measured, under basal conditions, was 23 +/- 2 mumol/ml of cell water (37 degrees C) (n = 3, S.D.) and was demonstrated to be responsive to a number of physiological stimuli. The level was temperature-sensitive. It was reduced by inhibitors of apical Na+ transport, furosemide and amiloride, and it was raised with (Na+ + K+)-ATPase inhibition. The furosemide and amiloride actions described would suggest that the Na+-transporting mechanisms sensitive to these agents (e.g. Na+/K+/Cl- cotransport system, Na+:H+ exchange system) contribute to the regulation of the intracellular Na+ level in the kidney tubular preparation studied.  相似文献   

4.
The intracellular sodium concentration in the amoebae from the slime mold Dictyostelium discoideum has been studied using 23Na NMR. The 23Na resonances from intracellular and extracellular compartments could be observed separately in the presence of the anionic shift reagent Dy(PPPi)7-2 which does not enter into the amoebae and thus selectively affects Na+ in the extracellular space. 31P NMR was used to control the absence of cellular toxicity of the shift reagent. The intracellular Na+ content was calculated by comparison of the intensities of the two distinct peaks arising from the intra- and extracellular spaces. It remained low (0.6 to 3 mM) in the presence of external Na+ (20 to 70 mM), and a large Na+ gradient (20- to 40-fold) was maintained. A rapid reloading of cells previously depleted of Na+ was readily measured by 23Na NMR. Nystatin, an antibiotic known to perturb the ion permeability of membranes, increased the intracellular Na+ concentration. The time dependence of the 23Na and 31P NMR spectra showed a rapid degradation of Dy(PPPi)7-2 which may be catalyzed by an acid phosphatase.  相似文献   

5.
23Na nuclear magnetic resonance spectroscopy (NMR) is increasingly being used to study Na+ gradients and fluxes in biological tissues. However, the quantitative aspects of 23Na NMR applied to living systems remain controversial. This paper compares sodium concentrations determined by 23Na NMR in intact rat hindlimb (n = 8) and excised rat gastrocnemius muscle (n = 4) with those obtained by flame photometric methods. In both types of samples, 90% of the sodium measured by flame photometry was found to be NMR-visible. This is much higher than previously reported values. The NMR measurements for intact hindlimb correlated linearly with the flame photometric measurements, implying that one pool of sodium, predominantly extracellular, is 100% visible. From measurements on excised muscle, in which extracellular space is more clearly defined, the NMR visibility of intracellular Na+ was calculated to be 70%, assuming an extracellular space of 12% of the total tissue water volume and an extracellular NMR visibility of 100%. 23Na transverse relaxation measurements were carried out using a Hahn spin echo on both intact hindlimb (n = 1) and excised muscle (n = 2) samples. These showed relaxation curves that could each be described adequately using two relaxation times. The rapidly relaxing component showed a T2 value of 3-4 ms and the slowly relaxing component a T2 of 21-37 ms. A spin lattice relaxation (T1) measurement on intact hindlimb yielded a value of 51 ms. These relatively long relaxation times show that the quadrupolar relaxation effect of Na+ complexing to large macromolecules or being otherwise motionally restricted is relatively weak. This is consistent with the high NMR visibilities reported here.  相似文献   

6.
The ability to depress the resonance intensity of 23Na in rat liver tissue was not found in the supernatant fraction. It was exclusively localized in particulate fractions. The intensity and saturation behavior of the 23Na signal was examined in suspensions containing various amounts of the particulate fraction of rat liver homogenate. The results strongly suggest that the 23Na signal of tissue reflects quadrupole interactions and does not result from a slow exchange between the free and bound fractions of Na+. The activity coefficient of Na+ in rat liver homogenate (no medium was added) was 0.59, about 20% less than that in the isotonic saline. Available evidences and discussion indicate that the bound Na+ in the homogenate is much less than the so-called “NMR-invisible” fraction of Na+.  相似文献   

7.
We have used 23Na and 31P nuclear magnetic resonance (NMR) spectroscopy to elucidate some of the bioenergetic changes that occur in the freshwater cyanobacterium Synechococcus 6311 after a transition from growth medium (Na concentration 0.01 M) to medium containing 0.5 M NaCl. 23Na NMR analysis showed Na rapidly penetrates the cells under dark aerobic conditions; cells grown for several days in high salt medium, however, reestablish a low internal sodium content, comparable to control cells. For 31P NMR analysis, a system was devised to aerate and illuminate cell suspensions during spectral acquisition. The NMR spectra showed that when cells are presented with 0.5 M NaCl (final concentration), nucleotide triphosphate peaks decrease, the inorganic phosphate peak increases, and the cytoplasmic pH transiently increases from 7.4 to 7.9. Pyrophosphate added to cell suspensions is hydrolyzed to inorganic phosphate apparently by an extracellular phosphatase, allowing external and internal pools of inorganic phosphate to be distinguished. Nucleotide triphosphate levels fall almost as much when cells are incubated in darkness as under anoxia, indicating that both respiration and photosynthesis contribute to the maintenance of intracellular ATP levels. Cells grown in high salt medium for several generations exhibited a pattern of 31P metabolites similar to control cells, except that they produced more (and more intense) peaks in the monoester phosphate region, presumably signals from sugar phosphates.  相似文献   

8.
A dynamic 23Na nuclear magnetic resonance (NMR) technique was applied to the exchange system of Na+ ions present inside and outside large unilamellar vesicles at an equivalent concentration. Addition of melittin to phosphatidylcholine vesicles did not induce any detectable Na+ transport across the membrane but subsequent addition of a trace of chlorpromazine or imipramine did induce Na+ transport. Because the formation of a drug-melittin adduct in a solution was detected by 1H NMR, the activation of melittin channels was assumed to originate from the direct interaction of the drug and melittin.  相似文献   

9.
Na+ movements in S. faecalis were studied by 23Na NMR. They proved to be dependent on phosphate concentration in the buffer during the de-energization step. K+ and H+ were also studied respectively by potentiometry and 31P NMR and were shown not to be implicated. For de-energized cells the internal phosphate concentration, on the contrary, was directly linked to the external phosphate contained in the buffer. The experiments showed a Na+/Pi dependence in this prokaryote so far known only in eukaryotes.  相似文献   

10.
The relaxation rate R = pi Delta nu(1/2) of the quadrupolar (23)Na nucleus was measured at pH approximately 7 using a 200 MHz NMR spectrometer with a view to observe the interaction between hyaluronan and its natural counterion Na(+) and the bications Ca(++), Mg(++) and Cu(++). An interpretation of our results, by means of the "entropy of fluctuations" concept of Na(+), is presented. We show that Cu(++) ions are more effective than Ca(++) and Mg(++). A possible model of complexation of Cu(++) in a cage formed by the 1-4 glycosidic bond, the carboxylate side-chain and the acetoamide side-chain is proposed, according to electrostatic potential computations using the ZINDO1 quantum semi empirical method.  相似文献   

11.
The 23Na spectrum from liquid crystals of sodium linoleate in water has been studied by nuclear magnetic resonance (NMR) techniques. The integrated intensity of the visible central spectral line was 34-39% of the intensity of a reference sample containing an equal quantity and concentration of 23Na nuclei. Since satellite signals were clearly demonstrable, the effect reflected a nuclear quadrupolar interaction rather than a splitting of the 23Na into two populations of bound and free nuclei. It is proposed that a similar quadrupolar effect may be the basis for the apparent binding of the 23Na observed in biological systems.  相似文献   

12.
Interactions of divalent polyamines with double-helical DNA in aqueous solution are investigated by monitoring the decrease in 23Na NMR relaxation rates as NaDNA is titrated with H3N(+)-(CH2)m-+NH3, where m = 3, 4, 5, or 6. Analogous measurements are made for the same homologous series of methylated polyamines (methonium ions). The dependence of the 23Na relaxation rates on the amount of added divalent cation (M2+) is analyzed quantitatively in terms of a two-state model. The sodium ions are assumed to be in rapid exchange between a "bound" state, where they are close enough to DNA so that it affects their relaxation rate, and a "free" state in bulk solution, where their relaxation rate is the same as in solutions containing no DNA. The distribution of Na+ and M2+ between these states is described quantitatively in terms of an ion-exchange parameter: DM = (pMB)(1-pNaB)n/(pNaB)n(1-pMB), where pNaB and pMB are the fractions of Na+ and M2+ that are close enough to DNA to be considered bound (by the NMR criterion), and n is the number of sodium ions displaced from DNA by the binding of one M2+ ion. For each of the polyamines and methonium ions investigated here, equations derived from this two-state model yield acceptable fittings of the titration curves if roNa, the number of sodium ions bound per DNA phosphate when no competing cations are present, is assigned a value between 0.6 and 1.00. Within this range, changing the value assigned to roNa does change the best-fitted values of DM determined for these polyamines (DH) and for the methonium ions (DMe) but does not alter the following conclusions about the trends in these parameters. (1) For polyamines and methonium ions of the same m, DH exceeds DMe by factors that are significantly larger for m = 3 and 4 than for m = 5 and 6. (2) DH for m = 3 and 4 is larger than DH for m = 5 and 6. (3) DMe for m = 3 and 4 is smaller than DMe for m = 5 and 6.  相似文献   

13.
The interaction of polyamines with DNA: a 23Na NMR study.   总被引:1,自引:1,他引:0       下载免费PDF全文
The interaction between a variety of polyamines, both naturally occurring and synthetic, and calf thymus DNA has been studied using 23Na NMR. The relaxation behaviour of 23Na reflects the extent of interaction of Na+ with DNA phosphate groups and therefore the extent of charge neutralisation of DNA phosphate groups (P) by polyamine amino and imino groups (N) in solutions of DNa, polyamine and Na+. The studies reveal that whereas spermine and spermidine are capable of expelling nearly all of the Na+ ions from DNA at N/P approximately 1, diamines such as putrescine and homologues of spermine and spermidine are capable of neutralising only roughly 50% of DNA phosphates. The results provide a challenge to current models of DNA-polyamine interactions.  相似文献   

14.
The accuracy of the 23Na nuclear magnetic resonance (NMR) method for measuring the sodium concentration in erythrocytes was tested by comparing the NMR results to those obtained by emission-flame photometry. Comparisons were made on aqueous solutions, hemolysates, gels, ghosts, and intact erythrocytes. The intra- and extracellular 23Na NMR signals were distinguished by addition of the dysprosium tripolyphosphate [Dy(PPP)7-2] shift reagent to the extracellular fluid. The intra- and extracellular volumes of ghosts and cells were determined by the isotope dilution method. Our results indicate that greater than 20% of the intracellular signal remains undetected by NMR in ghosts and cells. When the cells are hemolyzed, the amount of NMR-detectable sodium varies depending on the importance of gel formation. In hemolysates prepared by water addition, the NMR and flame photometry results are identical. The loss of signal in ghosts, cells, and undiluted hemolysates is attributed to partial binding of the Na+ ion to intracellular components, this binding being operative only when these components exist in a gel state. In a second part, 31P NMR was used to monitor the penetration of the shift reagent into the cells during incubation. Our data demonstrate that free Dy3+ can slowly accumulate inside the red cell.  相似文献   

15.
23Na NMR relaxation rate measurements show that Na+ binds specifically to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4--1.2 M-1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration.  相似文献   

16.
The 23Na NMR quadrupolar relaxation in NaDNA aqueous solutions has been investigated in the presence of D(+) and L(-) arabitol. Quite different results were produced by the enantiomers, i.e. the addition of D(+) arabitol produced a small increase of the 23Na NMR relaxation rates, while in the presence of L(-) arabitol a significant decrease was observed. These findings were analysed and discussed in terms of an effective interaction of L(-) arabitol with DNA.  相似文献   

17.
7Li and 23Na NMR spectra of the respective cations in gelatin and ι-carrageenan gels containing cryptand-[2.1.1] (for Li+) or cryptand-[2.2.2] (for Na+) displayed two transitions: the one at higher frequency corresponded to the cation surrounded by gel, the other to cation inside its appropriately sized cryptand. While binding to cryptands yielded much broader lines and shorter T 1 relaxation times, anisotropic splitting in first order 7Li or 23Na NMR spectra was not detected. Stretching the gels resulted in increasing the anisotropic electric field gradient tensor; thus, the NMR transitions of the cation in the gel were split (removal of degeneracy) to display its characteristic 3:4:3 triplet for spin = 3/2 nuclei. The transitions of the cryptand-bound cations (Li+-cryptand-[2.1.1] and Na+-cryptand-[2.2.2]) showed different extents of interaction with the electric field gradient tensor depending on the composition of the gel matrix. The NMR signal for 7Li+-cryptand-[2.1.1] in stretched gelatin gel showed a five-fold increased splitting as compared to the 7Li+ signal in the reference gel. In stretched ι-carrageenan gels, no anisotropic splitting from the cryptand-bound Li+ was recorded. Steady-state irradiation envelopes or z-spectra showed evidence of Li+ exchange between isotropic (cryptand) and anisotropic (gel) sites only at higher temperatures (55 °C). For Na+ bound to the cryptand-[2.2.2], anisotropic splitting (three-fold smaller compared with the 23Na signal in the reference gel) was only recorded in stretched ι-carrageenan gels, whereas gelatin gels showed only anisotropic splitting for the 23Na signal in the reference gel.  相似文献   

18.
Phase separation is a fundamental physicochemical process underlying the spatial arrangement and coordination of cellular events. Detailed characterization of biomolecular phase separation requires experimental access to the internal environment of dilute and especially condensed phases at high resolution. In this study, we take advantage from the ubiquitous presence of sodium ions in biomolecular samples and present the potentials of 23Na NMR as a proxy to report the internal fluidity of biomolecular condensed phases. After establishing the temperature and viscosity dependence of 23Na NMR relaxation rates and translational diffusion coefficient, we demonstrate that 23Na NMR probes of rotational and translational mobility of sodium ions are capable of capturing the increasing levels of confinement in agarose gels in dependence of agarose concentration. The 23Na NMR approach is then applied to a gel‐forming phenylalanine‐glycine (FG)‐containing peptide, part of the nuclear pore complex involved in controlling the traffic between cytoplasm and cell nucleus. It is shown that the 23Na NMR together with the 17O NMR provide a detailed picture of the sodium ion and water mobility within the interior of the FG peptide hydrogel. As another example, we study phase separation in water‐triethylamine (TEA) mixture and provide evidence for the presence of multiple microscopic environments within the TEA‐rich phase. Our results highlight the potentials of 23Na NMR in combination with 17O NMR in studying biological phase separation, in particular with regards to the molecular properties of biomolecular condensates and their regulation through various physico‐ and biochemical factors.  相似文献   

19.
The theoretical line-shape function of the nuclear magnetic resonance (NMR) signal of 23Na in biological tissue (and other unoriented systems) was obtained under the following conditions: (I) there occur two states of 23Na in the system, (II) the exchange of 23Na between the two states is rapid (but not too rapid), (III) in the absence of exchange, the 23Na in one state is characterized by a single transverse relaxation time T2 and a single Larmor frequency, and (IV) in the absence of exchange, the 23Na in the other state possesses (a) two different values of T2 and/or (b) more than one Larmor frequencies in the first order perturbation effect. The theoretical signal obtained consists of two Lorentzian components, which are centered at the same frequency, but characterized by different T2. Only the narrower component, comprising 40% of the total intensity, is visible, when the fast T2 is sufficiently short. The theoretical line-shape function of 23Na signal was also calculated for oriented systems in which the above conditions are fulfilled.  相似文献   

20.
The research on complex I has gained recently a new enthusiasm, especially after the resolution of the crystallographic structures of bacterial and mitochondrial complexes. Most attention is now dedicated to the investigation of the energy coupling mechanism(s). The proton has been identified as the coupling ion, although in the case of some bacterial complexes I Na(+) has been proposed to have that role. We have addressed the relation of some complexes I with Na(+) and developed an innovative methodology using (23)Na NMR spectroscopy. This allowed the investigation of Na(+) transport taking the advantage of directly monitoring changes in Na(+) concentration. Methodological aspects concerning the use of (23)Na NMR spectroscopy to measure accurately sodium transport in bacterial membrane vesicles are discussed here. External-vesicle Na(+) concentrations were determined by two different methods: 1) by integration of the resonance frequency peak and 2) using calibration curves of resonance frequency shift dependence on Na(+) concentration. Although the calibration curves are a suitable way to determine Na(+) concentration changes under conditions of fast exchange, it was shown not to be applicable to the bacterial membrane vesicle systems. In this case, the integration of the resonance frequency peak is the most appropriate analysis for the quantification of external-vesicle Na(+) concentration. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号