首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The betabellin structure is a de novo designed beta-sandwich protein consisting of two 32-residue beta-sheets packed against one another by hydrophobic interactions. d-Amino acid residues are used to energetically favor formation of type-I' beta turns. Air oxidation of betabellin 15S (B15S) (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p denotes d-Pro, h denotes d-His, and k denotes d-Lys) yields betabellin 15D (B15D), a 64-residue disulfide-bridged protein. The amino acid sequence of B15D contains a conformationally constrained d-Pro residue at the i + 1 position of each type-I' beta turn. To test whether d-Pro residues are necessary for folding at these positions, the six d-Pro residues of B15D are replaced by d-Ala residues in betabellin 16D (B16D). Previously, transmission electron microscopy showed that B15D forms unbranched, 35-A wide fibrils that associate into bundles in 5.0 mM 3-(N-morpholino)propanesulfonate and 250 mM NaCl at pH 7; under these conditions, B16D forms ribbon-like assemblies. The B15D fibrils resemble the protofilaments that constitute amyloid fibrils. The present studies show that both B15D and B16D have characteristics of amyloidogenic proteins: the unbranched fibrils and ribbons stained with Congo red and displayed a green birefringence, exhibited a cross-beta structure, and bound 1-anilino-8-naphthalenesulfonate. Thus, these de novo designed beta-sandwich proteins should provide useful models for studying the mechanism of amyloid protofilament formation and assembly into amyloid fibrils and for designing potential inhibitors of amyloidogenesis.  相似文献   

2.
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array.  相似文献   

3.
The betabellin structure is a de novo designed beta-sandwich protein consisting of two 32-residue beta sheets packed against one another by hydrophobic interactions. Betabellin 16S (B16S), a 32-residue peptide chain (HSLTAKIakLTFSIAahTYTCAVakYTAKVSH, where a is DAla, h is DHis, and k is DLys), did not have beta structure in water at pH 6.5. Air oxidation of B16S furnished betabellin 16D (B16D), a 64-residue disulfide-bridged two-chain protein, which also did not fold in water at pH 6.5. However, the extent of beta structure observed for B16D increased with pH and ionic strength of the solution and the B16D concentration as observed by circular dichroism spectropolarimetry. Transmission electron microscopy showed that B16D formed narrow fibrils that associated into broad ribbons in 5.0 mM Mops and 0.25 M NaCl at pH 6.9.  相似文献   

4.
The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue -sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited -sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7 ± 2 nm) was consistent with the width (6.8 nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D -sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

5.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

6.
Summary The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, wherep=DPro,k=DLys, andh=DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7±2 nm) was consistent with the width (6.8nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

7.
Paralytic peptide 1 (PP1) from a moth, Manduca sexta, is a 23-residue peptide (Glu-Asn-Phe-Ala-Gly-Gly-Cys-Ala-Thr-Gly-Tyr-Leu-Arg-Thr-Ala-Asp-Gly-Arg -Cys-Lys-Pro-Thr-Phe) that was first found to have paralytic activity when injected into M. sexta larvae. Recent studies demonstrated that PP1 also stimulated the spreading and aggregation of a blood cell type called plasmatocytes and inhibited bleeding from wounds. We determined the solution structure of PP1 by two-dimensional 1H NMR spectroscopy to begin to understand structural-functional relationships of this peptide. PP1 has an ordered structure, which is composed of a short antiparallel beta-sheet at residues Tyr11-Thr14 and Arg18-Pro21, three beta turns at residues Phe3-Gly6, Ala8-Tyr11 and Thr14-Gly17, and a half turn at the carboxyl-terminus (residues Lys20-Phe23). The well-defined secondary and tertiary structure was stabilized by hydrogen bonding and side-chain hydrophobic interactions. In comparison with two related insect peptides, whose structures have been solved recently, the amino-terminal region of PP1 is substantially more ordered. The short antiparallel beta-sheet of PP1 has a folding pattern similar to the carboxyl-terminal subdomain of epidermal growth factor (EGF). Therefore, PP1 may interact with EGF receptor-like molecules to trigger its different biological activities.  相似文献   

8.
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single L-amino acid with its corresponding D-enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274, 13181]. The diastereomer with a D-Lys substituted at position 4 caused the greatest improvement in specificity vs. other L to D substitutions within the cyclic 14-residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted beta-sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275, 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a D- or L-amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the D- and L-substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic D-amino acids D-Lys and D-Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the L-diastereomers, which demonstrated strong hemolysis. All of the L-substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the D-substituted peptides tended to improve based on the hydrophilicity of the residue. D-Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic D-amino acid substitutions had superior antimicrobial activity vs. the L-enantiomers although substitution of a hydrophobic D-amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted beta-sheet structure on antimicrobial activity.  相似文献   

9.
The three-dimensional solution structure of ascidian trypsin inhibitor (ATI), a 55 amino acid residue protein with four disulfide bridges, was determined by means of two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. The resulting structure of ATI was characterized by an alpha-helical conformation in residues 35-42 and a three-stranded antiparallel beta-sheet in residues 22-26, 29-32, and 48-50. The presence of an alpha-helical conformation was predicted from the consensus sequences of the cystine-stabilized alpha-helical (CSH) motif, which is characterized by an alpha-helix structure in the Cys-X(1)-X(2)-X(3)-Cys portion (corresponding to residues 37-41), linking to the Cys-X-Cys portion (corresponding to residues 12-14) folded in an extended structure. The secondary structure and the overall folding of the main chain of ATI were very similar to those of the Kazal-type inhibitors, such as Japanese quail ovomucoid third domain (OMJPQ3) and leech-derived tryptase inhibitor form C (LDTI-C), although ATI does not show extensive sequence homology to these inhibitors except for a few amino acid residues and six of eight half-cystines. On the basis of these findings, we realign the amino acid sequences of representative Kazal-type inhibitors including ATI and discuss the unique structure of ATI with four disulfide bridges.  相似文献   

10.
A recipe for designing water-soluble, beta-sheet-forming peptides.   总被引:6,自引:4,他引:2       下载免费PDF全文
Based on observations of solubility and folding properties of peptide 33-mers derived from the beta-sheet domains of platelet factor-4 (PF4), interleukin-8 (IL-8), and growth related protein (Gro-alpha), as well as other beta-sheet-forming peptides, general guidelines have been developed to aid in the design of water soluble, self-association-induced beta-sheet-forming peptides. CD, 1H-NMR, and pulsed field gradient NMR self-diffusion measurements have been used to assess the degree of folding and state of aggregation. PF4 peptide forms native-like beta-sheet tetramers and is sparingly soluble above pH 6. IL-8 peptide is insoluble between pH 4.5 and pH 7.5, yet forms stable, native-like beta-sheet dimers at higher pH. Gro-alpha peptide is soluble at all pH values, yet displays no discernable beta-sheet structure even when diffusion data indicate dimer-tetramer aggregation. A recipe used in the de novo design of water-soluble beta-sheet-forming peptides calls for the peptide to contain 40-50% hydrophobic residues, usually aliphatic ones (I, L, V, A, M) (appropriately paired and mostly but not always alternating with polar residues in the sheet sequence), a positively charged (K, R) to negatively charged (E, D) residue ratio between 4/2 and 6/2, and a noncharged polar residue (N, Q, T, S) composition of about 20% or less. Results on four de novo designed, 33-residue peptides are presented supporting this approach. Under near physiologic conditions, all four peptides are soluble, form beta-sheet structures to varying degrees, and self-associate. One peptide folds as a stable, compact beta-sheet tetramer, whereas the others are transient beta-sheet-containing aggregates.  相似文献   

11.
Lee DL  Hodges RS 《Biopolymers》2003,71(1):28-48
The cyclic beta-sheet structure possessed by the 10-residue antibiotic peptide gramicidin S was taken as the structural framework for the de novo design of biologically active peptides with membrane-active properties. We have shown from previous studies that gramicidin S is a broad-spectrum antibiotic effective against Gram-positive bacteria, Gram-negative bacteria, and fungi, but is toxic to human red blood cells. We tested the effect of ring size on antimicrobial activity and hemolytic activity on peptides varying from 4 to 16 residues. Interestingly, we were able to dissociate hemolytic activity and antimicrobial activity by increasing the ring size of the peptide to 14 residues (peptide GS14). Furthermore, we increased specificity for microbial membranes while decreasing toxicity to red blood cells by substituting enantiomers (D-amino acids for L-amino acids and vice versa) into the GS14 sequence. The enantiomeric substitutions all disrupted beta-sheet structure in benign medium and decreased peptide amphipathicity. The least amphipathic peptide, produced by substituting a D-Lys at position 4 of GS14 (peptide GS14K4), also had the highest therapeutic index, i.e., highest degree of specificity for microbial cells over human cells. Solution structures of GS14 analogs solved by NMR spectroscopy showed that the D-amino acid side chain was located on the nonpolar face of GS14K4. Another analog, a beta-sheet peptide with reduced amphipathicity (peptide GS14 K3L4), also had a lysine (lysine 3) on the nonpolar face as determined by the NMR structure. Both GS14K4 and GS14 K3L4 had reduced amphipathicity relative to GS14 and much higher therapeutic indices. Finally, the alteration of the nonpolar face hydrophobicity of GS14K4 analogs provided a range of activities and specificities, where the peptides with the intermediate hydrophobicities among the series had the highest therapeutic indices. The optimal peptide hydrophobicities varied depending on the microorganism being tested, with higher hydrophobicity requirements against Gram-positive bacteria and yeast compared with Gram-negative microorganisms. The net result of these studies suggests that it is possible to rationally design a cyclic membrane-active antimicrobial peptide with high specificity towards prokaryotic (bacterial and fungal) membranes and minimal toxicity to eukaryotic (e.g., mammalian) membranes.  相似文献   

12.
Rossinsky E  Srebnik S 《Biopolymers》2005,79(5):259-268
Ensemble growth Monte Carlo (EGMC) and dynamic Monte Carlo (DMC) simulations are used to study sequential folding and thermodynamic stability of hydrophobic-polar (HP) chains that fold to a compact structure. Molecularly imprinted cavities are modeled as hard walls having sites that are attractive to specific polar residues on the chain. Using EGMC simulation, we find that the folded conformation can be stabilized using a small number of carefully selected residue-specific sites while a random selection of surface-bound residues may only slightly contribute toward stabilizing the folded conformation, and in some cases may hinder the folding of the chain. DMC simulations of the surface-bound chain confirm increased stability of the folded conformation over a free chain. However, a different trend of the equilibrium population of folded chains as a function of residue-external site interactions is predicted with the two simulation methods.  相似文献   

13.
In the native folded conformation of a globular protein, amino acid residues distant along the polypeptide chain come together to form the compact structure. This spatial structure is such that most of the polar residues are on the surface and have contact with the solvent medium and the nonpolar residues buried in the interior which have contact with similar nonpolar side chains. This cooperativity and mutual interaction among the randomly aligned amino acid residues suggest that each type of residue may prefer to have a specific environment. To gain more insight into this aspect of residue-residue cooperativity, a detailed analysis of the preferred environment associated with each of the 20 different amino acid residues in a number of protein crystals has been carried out. The variation of nonpolar nature computed for different sizes of spheres shows that the spatial region between radii of 6 and 8 Å is more favored for hydrophobic interactions and indicates that the influence of each residue over the surrounding medium extends predominantly up to a distance of 8 Å. The analysis of the surrounding amino acid residues associated with each type of residue shows that there is a definite tendency for each type of residue to have association with specific residues. The variation in environment is found even within the polar group as well as in the nonpolar group of residues. The surrounding residues associated with isoleucine, leucine, and valine are purely nonpolar. Proline, a nonpolar residue, is often surrounded by polar residues. The surrounding nonpolar nature of the tryptophan and tyrosine residues implies that even a single polar atom in a nonpolar side chain is sufficient to reduce their hydrophobic environment. There exists a high degree of mutual residue-residue cooperativity between the pairs glutamic acid-lysine, methionine-arginine, asparagine-tryptophan, and glutamine-proline, and the mutual residue-residue noncooperativity is high for the pairs methionine-aspartic acid, cysteine-glutamic acid, histidine-glutamine, and leucine-asparagine. The formation of secondary and tertiary structures is discussed in terms of the preferred environment and mutual cooperativity among various types of amino acid residues.  相似文献   

14.
Calreticulin (CRT) is an abundant molecular chaperone of the endoplasmic reticulum. Its central, proline-rich P-domain, comprising residues 189-288, contains three copies of each of two repeat sequences (types 1 and 2), which are arranged in a characteristic '111222' pattern. Here we show that the three-dimensional structure of CRT(189-288) contains a single hairpin fold formed by the entire polypeptide chain. The loop at the bottom of the hairpin consists of residues 227-247, and is closed by an anti-parallel beta-sheet of residues 224-226 and 248-250. Two additional beta-sheets contain residues 207-209 and 262-264, and 190-192 and 276-278. The 17-residue spacing of the beta-strands in the N-terminal part of the hairpin and the 14-residue spacing in the C-terminal part reflect the length of the type 1 and type 2 sequence repeats. As a consequence of this topology the peptide segments separating the beta-strands in the N-terminal part of the hairpin are likely to form bulges to accommodate the extra residues. These results are based on nearly complete sequence-specific NMR assignments for CRT(189-288), which were obtained using standard NMR techniques with the (13)C/(15)N-labeled protein, and collection of nuclear Overhauser enhancement upper distance constraints.  相似文献   

15.
Horng JC  Moroz V  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2002,41(45):13360-13369
A set of peptides derived from the N-terminal domain of the ribosomal protein L9 (NTL9) have been characterized in an effort to define the minimum unit of this domain required to fold and to provide model peptides for the analysis of electrostatic interactions in the unfolded state. NTL9 is a 56-residue alpha-beta protein with a beta1-loop-beta2-alpha1-beta3-alpha2 topology. The beta-sheet together with the first helix comprise a simple example of a common supersecondary motif called the split beta-alpha-beta fold. Peptides corresponding to the beta1-loop-beta2 unit are unstructured even when constrained by an introduced disulfide. The pK(a)s of Asp-8 and Glu-17 in these peptides are slightly lower than the values found for shorter peptides but are considerably higher than the values in NTL9. A 34-residue peptide, which represents the beta1-loop-beta2-alpha1 portion of NTL9, is also unstructured. In contrast, a 39-residue peptide corresponding to the entire split beta-alpha-beta motif is folded and monomeric as judged by near- and far-UV CD, two-dimensional NMR, ANS binding experiments, pK(a) measurements, and analytical ultracentrifugation. The fold is very similar to the structure of this region in the intact protein. Thermal and urea unfolding experiments show that it is cooperatively folded with a DeltaG degrees of unfolding of 1.8-2.0 kcal/mol and a T(m) of 58 degrees C. This peptide represents the first demonstration of the independent folding of an isolated split beta-alpha-beta motif, and is one of only four naturally occurring sequences of fewer than 40 residues that has been shown to fold cooperatively in the absence of disulfides or ligand binding.  相似文献   

16.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

17.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

18.
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.  相似文献   

19.
It can be argued from the principle of solvent exclusion that the introduction of hydrophobic residues onto the surface of a protein will not destabilize the folded state because the nonpolar side chain will be at least as exposed in the unfolded state as it is when the protein chain is folded. A comparison of the folding pathway of wild type and 11 site-directed mutants of CD2.d1 shows this to be true. In fact, owing to partial burial of nonpolar groups as folding proceeds, we find that the rapidly formed intermediate state and, to a greater extent, the transition state are generally stabilized by hydrophobic surface mutations. This effect is slightly moderated in the folded state presumably by the perturbation of van der Waals' contacts and/or local electrostatic interactions that have a greater influence in this fully compact structure. The fact that in all but one case we find that stabilization of the rapidly collapsed intermediate is accompanied by a faster acquisition of the folded state refutes the argument that I states are generally "off pathway" conformations or ensembles that lead to the inhibition of otherwise more rapid folding trajectories.  相似文献   

20.
Lipid-peptide interactions with the 27-residue peptide of sequence KLEALYILMVLGFFGFFTLGIMLSYIR reconstituted as beta-sheet assemblies in dimyristoylphosphatidylcholine bilayers have been studied by electron spin resonance (ESR) spectroscopy with spin-labeled lipids. The peptide corresponds to residues 42-68 of the IsK voltage-gated K+ channel protein and contains the single putative transmembrane span of this protein. Lipid-peptide interactions give rise to a second component in the ESR spectra of lipids spin-labeled on the 14C atom of the chain that corresponds to restriction of the lipid mobility by direct interaction with the peptide assemblies. From the dependence on the lipid/peptide ratio, the stoichiometry of lipid interaction is found to be about two phospholipids/peptide monomer. The sequence of selectivity for lipid association with the peptide assemblies is in the order phosphatidic acid > stearic acid = phosphatidylserine > phosphatidylglycerol = phosphatidylcholine. Comparison with previous data for a corresponding 26-residue mutant peptide with a single deletion of the apolar residue Leu2 (Horvath et al., 1995. Biochemistry 34:3893-3898), indicates a very similar mode of membrane incorporation for native and mutant peptides, but a strongly modified pattern and degree of specificity for the interaction with negatively charged lipids. The latter is interpreted in terms of the relative orientations of the charged amino acid side chains in the beta-sheet assemblies of the native and deletion-mutant peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号