首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In order to find orally active Zn(II) complexes that can treat diabetes mellitus (DM) at low doses, four new Zn(II)-dithiocarbamate complexes with Zn(II)-sulfur coordination bonds were prepared and their in vitro insulinomimetic activity and in vivo anti-diabetic ability were evaluated. Among the Zn(II)-dithiocarbamate complexes, the bis(pyrrolidine-N-dithiocarbamate)zinc(II) (Zn(pdc)(2)) complex was found to be the most effective in terms of inhibiting free fatty acid-release and enhancing glucose-uptake in adipocytes. After oral administration of the Zn(pdc)(2) complex to KK-A(y) mice with obesity and type 2 DM, we observed that the high blood glucose levels in the mice were lowered from approximately 500 mg/dL to 350 mg/dL within 6 days, and the effect was maintained during the administration period. Also, indicators of insulin resistance such as serum insulin, leptin, and triglyceride levels were also reduced compared with those in untreated mice. Moreover, the Zn(pdc)(2) complex improved not only the hypertension in the mice, but also the adiponectin level in the serum. On the basis of the results, the Zn(pdc)(2) complex is proposed to improve hyperglycemia and insulin resistance in type 2 DM animals on daily oral administrations.  相似文献   

2.
Several metal ions and their complexes have been known to mimic the action of insulin in in vitro and in vivo systems. We prepared a family of Zn(II) complexes derived from amino ligands with Zn(Nn) (n=3 and 4) coordination modes, the insulinomimetic activity being estimated by an inhibitory effect of free fatty acid release from isolated rat adipocytes treated with epinephrine. In comparison with the positive controls VOSO(4) and ZnSO(4), Zn(II)-amine complexes with stability constants (log beta) lower than 11.5 exhibited higher insulinomimetic activities. Among them, a bis(2-aminomethyl pyridinato)Zn(II) (Zn(2-ampy)(2)(2+)) complex with the highest insulinomimetic activity and a higher stability constant but lower than 11.5 was selected, and subjected to in vivo evaluation in KK-A(y) mice with a genetically type 2 diabetes mellitus. The high blood glucose level of the mice was lowered by daily intraperitoneal injections of Zn(2-ampy)(2)(2+) at a dose of 2 mg Zn/kg body weight for 14 days. Based on the results, Zn(2-ampy)(2)(2+) with Zn(N(4)) coordination mode was proposed to have both a high in vitro insulinomimetic activity and an in vivo blood glucose lowering effect.  相似文献   

3.
Three zinc(II) complexes of picolinic acid and its derivatives with a Zn(N2O2) coordination mode were prepared and evaluated for their insulinomimetic activities by in vitro and in vivo studies. By introducing an electron-donating methyl group into the picolinate ligand (pic), bis(6- or 3-methylpicolinato)zinc(II) complexes [Zn(6-mpa)2 or Zn(3-mpa)2, respectively] were prepared. The Zn(6-mpa)(2) complex was crystallized as a water adduct [Zn(6-mpa)2(H2O)].H2O, in which two carboxylate oxygens and two pyridine nitrogens of 6-mpa and a water oxygen coordinate to a zinc(II) with a trigonal bipyramidal geometry. By in vitro evaluation of the inhibition of free fatty acid (FFA) release from isolated rat adipocytes in the presence of epinephrine, the insulinomimetic activities of Zn(pic)2, Zn(6-mpa)2, and Zn(3-mpa)2 (IC50=0.64 +/- 0.13, 0.31 +/- 0.05, and 0.40 +/- 0.07 mM, respectively) were found to be higher than those of VOSO(4) (IC50=1.00 mM) and ZnSO(4) (IC50=1.58 +/- 0.05 mM) in terms of IC50 value, the 50% inhibition concentrations for the FFA release from the adipocytes. Then, Zn(6-mpa)2, which exhibited the highest in vitro insulinomimetic activity among three complexes examined, was given at a dose of 3.0 mg (45.9 micromol) Zn/kg body weight to KK-A(y) mice with type 2 diabetes mellitus by daily intraperitoneal injections for 14 days and it was found that the hereditary high blood glucose levels were lowered during the administration of the complex. The improvement of diabetes mellitus was confirmed with the oral glucose tolerance test.  相似文献   

4.
AimsLeu-Ser-Glu-Leu (LSEL) is the main active ingredient of globin digest (GD) that has an anti-diabetic effect. Here, we investigated the anti-diabetic effect of LSEL for the first time.Main methodsThe anti-diabetic effects of GD and LSEL in ICR mice, streptozotocin (STZ)-induced diabetic mice and KK-Ay mice were examined.Key findingsGD and LSEL suppressed the elevation of blood glucose in an oral glucose tolerance test (OGTT) in ICR mice, STZ-induced diabetic mice and KK-Ay mice as well as in an oral sucrose tolerance test in ICR mice and in an insulin tolerance test (ITT) in KK-Ay mice. GD and LSEL decreased the blood glucose levels in the basal state in STZ-induced diabetic mice and KK-Ay mice. Furthermore, GD and LSEL elevated the serum insulin levels in an OGTT in ICR mice and KK-Ay mice and promoted the use of insulin in an ITT in KK-Ay mice. GD and LSEL increased the translocation or expression of the glucose transporter 4 in the muscle of ICR mice, STZ-induced diabetic mice and KK-Ay mice and increased the expression of the uncoupling protein 2 (UCP2) in the muscle of ICR mice.SignificanceThese results indicate that GD and LSEL control blood glucose through the promotion of glucose uptake in the muscle of the mice. The acceleration of glucose uptake by GD and LSEL may be controlled by the promotion of insulin secretion and the up-regulation of UCP2 expression. GD and LSEL seem to be useful for lowering the incidence of hyperglycemia.  相似文献   

5.
High blood glucose levels of KK-A(y) mice with type 2 diabetes mellitus were normalized by daily intraperitoneal (ip) administration of a zinc(II) complex, bis(maltolato)zinc(II) (Zn(Mal)(2)) with a Zn(O(4)) coordination mode, following the finding of strong in vitro insulinomimetic activity in isolated rat adipocytes treated with epinephrine in terms of the inhibition of free fatty acid release. The blood glucose level was maintained in the normal range during administration of the Zn(Mal)(2) complex for 14 days and improvements in the glucose tolerance were confirmed by an oral glucose tolerance test.  相似文献   

6.
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.  相似文献   

7.
Zinc (Zn), an essential trace element, and its complexes have recently been known to exhibit insulinomimetic activities. However, the action mechanism of Zn(II) has yet been obscure. The purpose of the present study was to estimate the action mechanism of the Zn(II) complexes. We found first that Zn given in the chemical forms such as Zn(maltolate)2 and Zn(threoninate)2 complexes is highly uptaken in the isolated rat adipocytes compared with that of Zn(picolinate)2. Then, the action mechanism for the insulinomimetic activities was examined in terms of free fatty acid release from the adipocytes. Four Zn(II) compounds, ZnSO4, Zn(picolinate)2, Zn(maltolate)2, and Zn(threoninate)2, inhibited the free fatty acid release from the adipocytes treated with epinephrine (adrenaline). By using several inhibitors for fatty acids and glucose metabolisms in the adipocytes, the following results were obtained. (1) Zn(picolinic acid)2 complex acts on the insulin receptor and PI3-k, which relate to the glucose uptake, as indicated by the experiments using hydroxy-2-naphthalenylmethyl phosphonic acid tris acetoxy methyl ester (HNMPA-(AM)3) and wortmannin, respectively. (2) ZnSO4, and Zn(maltolate)2 and Zn(threoninate)2 complexes affect a glucose transporter 4 (GLUT 4), which is involved in the glucose uptake as indicated by the results using cytochalasin B. (3) Four Zn(II) compounds affect the activation of the phosphodiesterase as indicated by the experiments using cilostamide. These results indicate that the Zn(II) compounds promote the glucose uptake into the adipocytes by affecting at least three sites in the adipocytes, which in turn normalize the blood glucose levels in the experimental diabetic animals.  相似文献   

8.
Background and purposeDiosmetin (Dios), a flavonoid compound with multiple pharmacological activities. However, fewer studies have reported its effects on type 2 diabetic mellitus (T2DM). Here, we address the effect of Dios on glucose metabolism and gut microbiota in KK-Ay diabetic mice.MethodWild type C57BL/6 J mice or diabetic KK-Ay mice were treated with vehicle or Dios for one month. The ELISA kit and fluorescence microscope system were respectively employed to the evaluation of serum biochemical indicators and histopathological changes. Liver RNA-Seq and western blot were used to reveal the key signaling pathway. The effects of Dios on gut microbiota was investigated by the 16S rRNA gene sequencing, as well as the relationship between Dios and C. glu on glucose metabolism was explored with the C. glu transplantation.ResultsDios treatment significantly decreased blood glucose and increased serum insulin concentrations. RNA-Seq analysis found that the underlying action mechanism of Dios on T2DM was via modulating glucose metabolism, which was proved by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation. Besides, Dios treatment reshaped the unbalanced gut microbiota by suppressing the ratio of Firmicutes/Bacteroidetes and markedly increasing the richness of C. glu. Moreover, treatment with C. glu and Dios together could markedly ameliorate glucose metabolism by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation.ConclusionsDios treatment remarkably ameliorated glucose metabolism in KK-Ay diabetic mice by the regulation of C. glu via IRS/PI3K/AKT signaling pathway and reshaped the unbalanced gut microbiota. Our study provided evidence for the application of Dios to the treatment of T2DM.  相似文献   

9.
The aim of this study was to perform screening of a novel drug for treating liver injury. Bis(maltolato)zinc(II) complex [Zn(Mal)(2)], which was previously reported to possess insulinomimetic activity, was found to have potency against experimentally induced liver injury both in vitro and in vivo. Cultured rat hepatocytes were treated with bromobenzene for 24 h to induce cellular injury. Zn(Mal)(2) of various concentrations was added along with bromobenzene in order to evaluate the hepatoprotective activity of Zn(Mal)(2) in vitro. The number of viable hepatocytes decreased by 42% in the culture with bromobenzene. However, hepatocyte viability was maintained when Zn(Mal)(2) was added to the bromobenzene culture. The hepatoprotective activity of Zn(Mal)(2) in vivo was investigated using a concanavalin A-induced liver injury model in BALB/c mice. Changes in serum aminotransferase activities and the secretion of several cytokines were measured. The hepatoprotective effect of Zn(Mal)(2) was also demonstrated in vivo by the suppression of serum aspartate aminotransferase and alanine aminotransferase elevation. No significant changes in serum cytokines associated with the induction of hepatic damage were observed in the concanavalin A-induced injury model. However, examination of concanavalin A-treated mouse splenocytes revealed a dose-dependent suppression of cytokine secretions by Zn(Mal)(2). Zn(Mal)(2) possessed hepatoprotective activity and might exert its effect by a number of mechanisms.  相似文献   

10.
Antidiabetic activity of a xanthone compound, mangiferin   总被引:5,自引:0,他引:5  
Mangiferin (MF) isolated from Anemarrhena asphodeloides Bunge rhizome, was tested for antidiabetic activity in KK-Ay mice, an animal model of type-2 diabetes. MF lowered the blood glucose level of KK-Ay mice 3 weeks after oral administration (p < 0.01). However, no effect on the blood glucose level in normal mice was seen, indicating that MF could be useful in treating type-2 diabetes. In addition, MF improved hyperinsulinemia and, on insulin tolerance test, reduced blood glucose levels of KK-Ay mice. From these findings, it seems likely that MF exerts its antidiabetic activity by decreasing insulin resistance.  相似文献   

11.
The increasing prevalence of diabetes mellitus (DM) worldwide has underscored the urgency of developing an efficient therapeutic agent. Recently, Zn complexes have been attracting attention due to their antidiabetic activity. In this study, we designed and synthesized a new Zn complex, Zn-3,4-heptanedione-bis(N 4-methylthiosemicarbazonato) (Zn-HTSM), characterized its physicochemical properties, and examined its antidiabetic activity in KK-Ay type 2 DM model mice. It was demonstrated that Zn-HTSM has adequate lipophilicity for the cellular permeability, shows potent hypoglycemic activity, and improves glucose intolerance in KK-Ay mice. We also analyzed the levels of serum adipokines after continuous oral administration of Zn-HTSM. The level of serum leptin of KK-Ay mice is significantly reduced by the treatment of Zn-HTSM. Nevertheless, the levels of serum insulin and adiponectin were not improved. These data suggested that the Zn-HTSM acts on the leptin metabolism. Our present studies indicate that Zn-HTSM is a candidate oral antidiabetic agent for the treatment of type 2 DM.  相似文献   

12.
The MHC-encoded cofactor DM catalyzes endosomal loading of peptides onto MHC class II molecules. Despite evidence from in vitro experiments that DM acts to selectively edit the repertoire of class II:peptide complexes, the consequence of DM expression in vivo, or a predictive pattern of DM activity in the specificity of CD4 T cell responses has remained unresolved. Therefore, to characterize DM function in vivo we used wild-type (WT) or DM-deficient (DM(-/-)) mice of the H-2(d) MHC haplotype and tested the hypothesis that DM promotes narrowing of the repertoire of class II:peptide complexes displayed by APC, leading to a correspondingly selective CD4 T cell response. Surprisingly, our results indicated that DM(-/-) mice do not exhibit a broadened CD4 T cell response relative to WT mice, but rather shift their immunodominance pattern to new peptides, a pattern associated with a change in class II isotype-restriction. Specifically, we found that CD4 T cell responses in WT mice were primarily restricted to the I-A class II molecule, whereas DM(-/-) mice recognize peptides in the context of I-E. The observed shift in isotype-restriction appeared to be due in part to a modification in the peripheral CD4 T cell repertoire available for peptide recognition.  相似文献   

13.
Although zinc (Zn) deficiency has been associated with insulin resistance, and altered Zn metabolism (e.g., hyperzincuria, low-normal plasma Zn concentrations) may be present in diabetes, the potential effects of Zn on modulation of insulin action in Type II diabetes have not been established. The objective of this study was to compare the effects of dietary Zn deficiency and Zn supplementation on glycemic control in db/db mice. Weanling db/db mice and lean littermate controls were fed Zn-deficient (3 ppm Zn; dbZD and InZD groups), Zn-adequate control (30 ppm Zn; dbC and InC groups) or Zn-supplemented (300 ppm Zn; dbZS and InZS groups) diets for 6 weeks. Mice were assessed for Zn status, serum and urinary indices of diabetes, and gastrocnemius insulin receptor concentration and tyrosine kinase activity. Fasting serum glucose concentrations were significantly lower in the dbZS group compared with the dbZD group (19.3 +/- 2.9 and 27.9 +/- 4.1 mM, respectively), whereas the dbC mice had an intermediate value. There was a negative correlation between femur Zn and serum glucose concentrations (r = -0.59 for lean mice, P = 0.007). The dbZS group had higher pancreatic Zn and lower circulating insulin concentrations than dbZC mice. Insulin-stimulated tyrosine kinase activity in gastrocnemius muscle was higher in the db/db genotype, and insulin receptor concentration was not altered. In summary, dietary Zn supplementation attenuated hyperglycemia and hyperinsulinemia in db/db mice, suggesting that the roles of Zn in pancreatic function and peripheral tissue glucose uptake need to be further investigated.  相似文献   

14.
Diabetic nephropathy in KK and KK-Ay mice.   总被引:4,自引:0,他引:4  
KK mice and KK-Ay mice were examined for age related changes in blood and urinary biophysiological parameters. Blood hemoglobin A1c levels were significantly higher in KK-Ay and KK mice as compared to non-diabetic ddY mice. In both diabetic mice, especially KK-Ay mice, plasma insulin levels markedly increased at 2 to 4 months of age, and the urinary glucose and microalbumin levels and albumin-to-creatinine ratios increased dependent on age. Plasma thrombomodulin levels significantly increased at 2 to 4 months of age in both KK and KK-Ay mice. Mild enlargement of mesangial matrix and segmental proliferative glomerular nephritis were revealed in KK and KK-Ay mice, respectively, at 4 months of age. KK-Ay mice with insulin resistance and high urine mAlb level might be useful as models for the early stage of diabetic nephropathy.  相似文献   

15.
In developing new insulinomimetic zinc(II) complexes with different coordination structures and with a blood glucose-lowering effect to treat type 2 diabetic animals, we found a potent bis(maltolato)zinc(ll) complex, Zn(mal)2. Using the complex as the leading compound, we examined the in vitro and in vivo structure-activity relationships of Zn(mal)2 and its related complexes in respect to the inhibition of free fatty acids (FFA) release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine (adrenaline), and hypoglycemic activity. Among the compounds tested, a new Zn(II) complex with allixin that was isolated from garlic, bis(allixinato)Zn(II), Zn(alx)2, was found to exhibit the highest insulin-mimetic and hypoglycemic activities in type 2 KK-Ay diabetic mice. On the basis of the results, Zn(alx)2, complex was proposed to be a potent candidate for the treatment of type 2 diabetes.  相似文献   

16.
In order to examine the effect of metallopicolinate complexes with first transition metals and develop complexes that are more active than an insulinomimetic leading compound such as oxovanadium(IV)-picolinate complex, VO(pa)2, 10 metallopicolinate complexes were prepared, and their in vitro insulinomimetic and in vivo antidiabetic activities were evaluated. The in vitro activity was estimated by determining the inhibitory effects of these complexes on free fatty acid release from isolated rat adipocytes treated with epinephrine. Among the complexes, Cu(pa)2, and Mn(pa)3 exhibited higher activity than their respective metal ions and better activity than VO(pa)2. Since Cu(pa)2 was non-toxic in the cultured rat hepatic M cells, this complex was given streptozotocin (STZ)-induced type 1-like diabetic mice by single intraperitoneal injection, and found that this complex exhibited a higher hypoglycemic effect than the VO(pa)2 complex. Based on these results, we propose that Cu(pa)2 may be a potent alternative antidiabetic agent.  相似文献   

17.
Cytokine-inducers prevent insulin-dependent diabetes mellitus (IDDM) in animal models. We extended this therapy to non-insulin-dependent diabetes mellitus (NIDDM), because it was reported that diabetes of KK-Ay mice, a model for NIDDM, was recovered by allogenic bone-marrow transplantation that also prevented IDDM in animal models. An i.p. or i.v. injection of streptococcal preparation (OK 432) lowered fasting blood glucose (FBG) levels and markedly improved glucose tolerance test (GTT) in KK-Ay mice for more than 32 h regardless of the glucose loading routes (oral, i.v. or i.p.), while an i.v. injection of BCG improved FBG and GTT for more than 4 wks without body weight loss. The improvement of FBG and GTT with OK-432 was brought about in other NIDDM animals, GK rats and Wistar fatty rats. Among various cytokines possibly induced by OK-432 and BCG, IL-1α, TNFα and lymphotoxin significantly improved FBG and GTT in KK-Ay mice, whereas IL-2 and IFNγ did not. There were no differences between the OK-432-treated KK-Ay mice and control in histology of the pancreas, degree of insulin-induced decrease in blood glucose levels, and muscle glycogen synthase activities. As to insulin secretion, there is a tendency that the OK-432-treatment less than 1 week did not affect insulin levels during GTT, whereas the treatment more than 2 weeks increased the insulin levels. Thus, cytokine-inducers improved FBG and glucose tolerance of NIDDM animals probably via cytokines. The results imply a role of the cytokines in glucose tolerance of NIDDM, although precise immune and metabolic mechanisms remain to be elucidated.  相似文献   

18.

Objectives

The role of angiotensin II type 2 (AT2) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue.

Methods

T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[3H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined.

Results

Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue.

Conclusion

The present study demonstrated that direct AT2 receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells.  相似文献   

19.
The objective of the present study was to investigate the effects of oral selenate application in comparison to selenium deficiency and selenite treatment on the development of the diabetic status (glucose tolerance, insulin resistance and activities of glycolytic and gluconeogenic marker enzymes) in dbdb mice, representing a type II diabetic animal model. Therefore 21 adult male dbdb mice were assigned to 3 experimental groups of 7 animals each and put on a selenium deficient diet (< 0.03 mg/kg diet) based on torula yeast. Group 0Se was kept on selenium deficiency for 10 weeks while the mice of the groups SeIV and SeVI were supplemented daily with 15% of their individual LD(50) of sodium selenite or sodium selenate in addition to the diet. After 10 weeks a distinct melioration of the diabetic status indicated by a corrected glucose tolerance and a lowered insulin resistance was measured in selenate treated mice (group SeVI) in comparison to their selenium deficient and selenite treated companions and to their initial status. Activities of the glycolytic marker enzymes hexokinase, phosphofructokinase and pyruvate kinase were increased 1.7 to 3-fold in liver and/or adipose tissue by selenate treatment as compared to mice on selenium deficiency and mice with selenite administration. In contrast selenate treatment (SeVI) repressed the activity of liver pyruvate carboxylase the first enzyme in gluconeogenesis by about 33% in comparison to the selenium deficient (0Se) and selenite treated mice (SeIV). However the current study revealed an insulinomimetic role for selenate (selenium VI) also in type II diabetic animals due to a melioration of insulin resistance. In contrast selenium deficiency and especially selenite (selenium IV) impaired the diabetic status of dbdb mice, demonstrating the need for investigations on the insulinomimetic action of selenium due to the metabolism of different selenium compounds.  相似文献   

20.
During the investigation of the development of insulin-mimetic zinc(II) complexes with a blood glucose-lowering effect in experimental diabetic animals, we found a potent bis(maltolato)zinc(II) complex, Zn(ma)2, exhibiting significant insulin-mimetic effects in a type 2 diabetic animal model. By using this Zn(ma)2 as the leading compound, we examined the in vitro and in vivo structure–activity relationships of Zn(ma)2 and its related complexes. The in vitro insulin-mimetic activity of these complexes was determined by the inhibition of free fatty acid release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine. A new Zn(II) complex with allixin isolated from garlic, Zn(alx)2, exhibited the highest insulin-mimetic activity among the complexes analyzed. The insulin-mimetic activity of the Zn(II) complexes examined strongly correlated (correlation coefficient=0.96) with the partition coefficient (logP) of the ligand, indicating that the activity of Zn(ma)2-related complexes depends on the lipophilicity of the ligand. The blood glucose-lowering effects of Zn(alx)2 and Zn(ma)2 were then compared, and both complexes were found to normalize hyperglycemia in KK-Ay mice after a 14-day course of daily intraperitoneal injections. However, Zn(alx)2 improved glucose tolerance in KK-Ay mice much more than did Zn(ma)2, indicating that Zn(alx)2 possesses greater in vivo anti-diabetic activity than Zn(ma)2. In addition, Zn(alx)2 improved leptin resistance and suppressed the progress of obesity in type 2 diabetic KK-Ay mice. On the basis of these observations, we conclude that the Zn(alx)2 complex is a novel potent candidate for the treatment of type 2 diabetes mellitus.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0590-8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号