首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive aspergillosis, caused by Aspergillus fumigatus, is a severe systemic infection in immunocompromised patients. New drug targets are required, since therapeutic treatment often fails and is hampered by severe side effects of antifungals. Enzymes of the glyoxylate bypass are potential targets, since they are absent in humans, but required for growth of Aspergillus on C2-generating carbon sources. The key enzyme isocitrate lyase (ICL) can be inhibited by 3-nitropropionate, both as a purified enzyme and within intact cells, whereas the latter inhibition upregulates ICL promoter activity. ICL was found in distinct subcellular structures within growing hyphae, but only under conditions requiring ICL activity. In contrast, ICL was constitutively found in conidia, suggesting a specific role during germination. Lipids, as potential substrates, were detected in conidia and macrophages. Additionally, germinating conidia within macrophages contain ICL, suggesting that the glyoxylate shunt might be a relevant target for development of antifungals.  相似文献   

2.
Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.  相似文献   

3.
Euglena gracilis induced glyoxylate cycle enzymes when ethanol was fed as a sole carbon source. We purified, cloned and characterized a bifunctional glyoxylate cycle enzyme from E. gracilis (EgGCE). This enzyme consists of an N-terminal malate synthase (MS) domain fused to a C-terminal isocitrate lyase (ICL) domain in a single polypeptide chain. This domain order is inverted compared to the bifunctional glyoxylate cycle enzyme in Caenorhabditis elegans, an N-terminal ICL domain fused to a C-terminal MS domain. Purified EgGCE catalyzed the sequential ICL and MS reactions. ICL activity of purified EgGCE increased in the existence of acetyl-CoA at a concentration of micro-molar order. We discussed the physiological roles of the bifunctional glyoxylate cycle enzyme in these organisms as well as its molecular evolution.  相似文献   

4.
Genes involved in fatty acid catabolism have undergone extensive duplication in the genus Mycobacterium, which includes the etiologic agents of leprosy and tuberculosis. Here, we show that prokaryotic- and eukaryotic-like isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL) are jointly required for fatty acid catabolism and virulence in Mycobacterium tuberculosis. Although deletion of icl1 or icl2, the genes that encode ICL1 and ICL2, respectively, had little effect on bacterial growth in macrophages and mice, deletion of both genes resulted in complete impairment of intracellular replication and rapid elimination from the lungs. The feasibility of targeting ICL1 and ICL2 for chemical inhibition was shown using a dual-specific ICL inhibitor, which blocked growth of M. tuberculosis on fatty acids and in macrophages. The absence of ICL orthologs in mammals should facilitate the development of glyoxylate cycle inhibitors as new drugs for the treatment of tuberculosis.  相似文献   

5.
6.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

7.
8.
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The DeltaprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or DeltaprpDC bacteria.  相似文献   

9.
Role of gene fadR in Escherichia coli acetate metabolism.   总被引:8,自引:5,他引:3       下载免费PDF全文
Mutants of Escherichia coli K-12 constitutive for fatty acid degradation (fadR) showed an increased rate of utilization of exogenous acetate. Acetate transport, oxidation, and incorporation into macromolecules was approximately fivefold greater in fadR mutants than fadR+ strains during growth on succinate as a carbon source. This effect was due to the elevated levels of glyoxylate shunt enzymes in fadR mutants, since (i) similar results were seen with mutants constitutive for the glyoxylate shunt enzymes (iclR), (ii) induction of the glyoxylate shunt in fadR+ strains by growth on acetate or oleate increased the rate of acetate utilization to levels comparable to those in fadR mutants, and (iii) fadR and fadR+ derivatives of mutants defective for the glyoxylate shunt enzymes showed equivalent rates of acetate utilization under these conditions. These results suggest that the operation of the glyoxylate shunt may play a significant role in the utilization of exogenous acetate by fadR mutants.  相似文献   

10.
The metabolic pathway such as glyoxylate cycle (GC) enables Candida albicans, to survive under glucose deficient conditions prevalent in the hostile niche. Thus its key enzymes (Isocitrate lyase; ICL and malate synthase; MLS) represent attractive targets against C. albicans. We have previously reported the antifungal potential of a natural monoterpenoid perillyl alcohol (PA). The present study uncovers additional role of PA as a potent GC inhibitor. We explored that PA phenocopied ICL1 deletion mutant and were hypersensitive under low carbon utilizing conditions. The effect of PA on GC was substantiated by molecular docking analyses, which reveals the in-silico binding affinity of PA with ICL and MLS and explored that PA binds to the active sites of both proteins with better binding energy in comparison to their known inhibitors 3-nitropropionate and bromopyruvate respectively. Enzyme kinetics by Lineweaver-Burk plot unravels that PA inhibits ICL and MLS enzymes in competitive and non-competitive manner respectively. Moreover, semi-quantitative RT-PCR indicated that PA inhibits ICL1 and MLS1 mRNA expressions. Lastly, we demonstrated the antifungal efficacy of PA by enhanced survival of Caenorhabditis elegans model and less hemolytic activity (10.6%) on human blood cells. Further studies are warranted for PA to be considered as viable drug candidate.  相似文献   

11.
The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction.  相似文献   

12.
Isocitrate lyase (ICL) plays a pivotal role in the persistence of Mycobacterium tuberculosis in mice by sustaining intracellular infection in inflammatory macrophages. The enzyme allows net carbon gain by diverting acetyl-CoA from beta-oxidation of fatty acids into the glyoxylate shunt pathway. Given its potential as a drug target against persistent infections, we solved its structure without ligand and in complex with two inhibitors. Covalent modification of an active site residue, Cys 191, by the inhibitor 3-bromopyruvate traps the enzyme in a catalytic conformation with the active site completely inaccessible to solvent. The structure of a C191S mutant of the enzyme with the inhibitor 3-nitropropionate provides further insight into the reaction mechanism.  相似文献   

13.
14.
M. T. McCammon 《Genetics》1996,144(1):57-69
The two carbon compounds, ethanol and acetate, can be oxidatively metabolized as well as assimilated into carbohydrate in the yeast Saccharomyces cerevisiae. The distribution of acetate metabolic enzymes among several cellular compartments, mitochondria, peroxisomes, and cytoplasm makes it an intriguing system to study complex metabolic interactions. To investigate the complex process of carbon catabolism and assimilation, mutants unable to grow on acetate were isolated. One hundred five Acn(-) (``ACetate Nonutilizing') mutants were sorted into 21 complementation groups with an additional 20 single mutants. Five of the groups have defects in TCA cycle enzymes: MDH1, CIT1, ACO1, IDH1, and IDH2. A defect in RTG2, involved in the retrograde communication between the mitochondrion and the nucleus, was also identified. Four genes encode enzymes of the glyoxylate cycle and gluconeogenesis: ICL1, MLS1, MDH2, and PCK1. Five other genes appear to be defective in regulating metabolic activity since elevated levels of enzymes in several metabolic pathways, including the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism, were detected in these mutants: ACN8, ACN9, ACN17, ACN18, and ACN42. In summary, this analysis has identified at least 22 and as many as 41 different genes involved in acetate metabolism.  相似文献   

15.
The role of isocitrate lyase (ICL) in the glyoxylate cycle and its necessity for persistence and virulence of Mycobacterium tuberculosis has been well described. Recent reports have alluded to an additional role for this enzyme in M. tuberculosis metabolism, specifically for growth on propionate. A product of beta-oxidation of odd-chain fatty acids is propionyl-CoA. Clearance of propionyl-CoA and the by-products of its metabolism via the methylcitrate cycle is vital due to their potentially toxic effects. Although the genome of M. tuberculosis encodes orthologues of two of the three enzymes of the methylcitrate cycle, methylcitrate synthase and methylcitrate dehydratase, it does not appear to contain a distinct 2-methylisocitrate lyase (MCL). Detailed structural analysis of the MCL from Escherichia coli suggested that the differences in substrate specificity between MCLs and ICLs could be attributed to three conserved amino acid substitutions in the active site, suggesting an MCL signature. However, here we provide enzymatic evidence that shows that despite the absence of the MCL signature, ICL1 from M. tuberculosis can clearly function as a MCL. Furthermore, the crystal structure of ICL1 with pyruvate and succinate bound demonstrates that the active site can accommodate the additional methyl group without significant changes to the structure.  相似文献   

16.
The physiology and central metabolism of a ppc mutant Escherichia coli were investigated based on the metabolic flux distribution obtained by (13)C-labelling experiments using gas chromatography-mass spectrometry (GC-MS) and 2-dimensional nuclear magnetic resonance (2D NMR) strategies together with enzyme activity assays and intracellular metabolite concentration measurements. Compared to the wild type, its ppc mutant excreted little acetate and produced less carbon dioxide at the expense of a slower growth rate and a lower glucose uptake rate. Consequently, an improvement of the biomass yield on glucose was observed in the ppc mutant. Enzyme activity measurements revealed that isocitrate lyase activity increased by more than 3-fold in the ppc mutant. Some TCA cycle enzymes such as citrate synthase, aconitase and malate dehydrogenase were also upregulated, but enzymes of glycolysis and the pentose phosphate pathway were downregulated. The intracellular intermediates in the glycolysis and the pentose phosphate pathway, therefore, accumulated, while acetyl coenzyme A and oxaloacetate concentrations decreased in the ppc mutant. The intracellular metabolic flux analysis uncovered that deletion of ppc resulted in the appearance of the glyoxylate shunt, with 18.9% of the carbon flux being channeled via the glyoxylate shunt. However, the flux of the pentose phosphate pathway significantly decreased in the ppc mutant.  相似文献   

17.
Pseudomonas aeruginosa PAO1 mutants affected in acyclic monoterpenes, n-octanol, and acetate assimilation were isolated using transposon mutagenesis. The isocitrate lyase gene (aceA) corresponding to ORF PA2634 of the PAO1 strain genome was identified in one of these mutants. The aceA gene encodes a protein that is 72% identical to the isocitrate lyase (ICL) characterized from Colwellia maris, but is less than 30% identical to their homologues from pseudomonads. The genetic arrangement of aceA suggests that it is a monocistronic gene, and no adjacent related genes were found. The ICL protein was detected as a 60-kDa band in sodium dodecyl sulfate polyacrylamide gel electrophoresis from cultures grown on acetate, but not in glucose-grown PAO1 cultures. Genetic complementation further confirmed that the aceA gene encodes the ICL enzyme. The ICL enzyme activity in crude extracts from cultures of the PAO1 strain was induced by acetate, citronellol and leucine, and repressed by growth on glucose or citrate. These results suggest that ICL is involved in the assimilation of acetate, acyclic monoterpenes of the citronellol family, alkanols, and leucine, in which the final intermediary acetyl-coenzyme A may be channelled to the glyoxylate shunt.  相似文献   

18.
The aim of this work was to understand the steps controlling the biotransformation of trimethylammonium compounds into L(-)-carnitine by Escherichia coli. The high-cell density reactor steady-state levels of carbon source (glycerol), biotransformation substrate (crotonobetaine), acetate (anaerobiosis product) and fumarate (as an electron acceptor) were pulsed by increasing them fivefold. Following the pulse, the evolution of the enzyme activities involved in the biotransformation process of crotonobetaine into L(-)-carnitine (crotonobetaine hydration), in the synthesis of acetyl-CoA (ACS: acetyl-CoA synthetase and PTA: ATP: acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid (ICDH: isocitrate dehydrogenase) and glyoxylate (ICL: isocitrate lyase) cycles was monitored. In addition, the levels of carnitine, the cell ATP content and the NADH/NAD(+) ratio were measured in order to assess the importance and participation of these energetic coenzymes in the catabolic system. The results provided an experimental demonstration of the important role of the glyoxylate shunt during biotransformation and the need for high levels of ATP to maintain metabolite transport and biotransformation. Moreover, the results obtained for the NADH/NAD(+) pool indicated that it is correlated with the biotransformation process at the NAD(+) regeneration and ATP production level in anaerobiosis. More importantly, a linear correlation between the NADH/NAD(+) ratio and the levels of the ICDH and ICL (carbon and electron flows) and the PTA and ACS (acetate and ATP production and acetyl-CoA synthesis) activity levels was assessed. The main metabolic pathway operating during cell metabolic perturbation with a pulse of glycerol and acetate in the high-cell density membrane reactor was that related to ICDH and ICL, both regulating the carbon metabolism, together with PTA and ACS enzymes (regulating ATP production).  相似文献   

19.
The glyoxylate cycle comprising isocitrate lyase (ICL) and malate synthase (MS) is an anaplerotic pathway essential for growth on acetate as the sole carbon source. The aceB gene, which encodes malate synthase has been previously cloned from Streptomyces clavuligerus NRRL 3585 and characterized. In this study, the aceA gene, encoding ICL from S. clavuligerus NRRL 3585, was obtained via genome walking experiments and PCR. The fully sequenced open reading frame encodes 436 amino acids with a deduced M(r) of 47.5 kDa, consistent with the observed M(r) (49-67.5 kDa) of most ICL enzymes reported so far. The cloned aceA gene was expressed in Escherichia coli BL21(lambdaDE3) cells, from which ICL was purified as a His-tagged product and its functionality demonstrated. Furthermore, the relationship between the carbon sources, growth and ICL activity in S. clavuligerus were investigated. Rapid growth was observed when the cells were cultured on 0.5% (w/v) glycerol, while delayed growth was observed when cells were grown on 0.5% (w/v) acetate. However, in both cases, high levels of ICL activity coincided with a cessation of growth, suggesting a late physiological role played by ICL in the natural host, S. clavuligerus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号