首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiols represent preferential targets of peroxynitrite in biological systems. In this work, we investigated the mechanisms and kinetics of the reaction of peroxynitrite with the dithiol dihydrolipoic acid (DHLA) and its oxidized form, lipoic acid (LA). Peroxynitrite reacted with DHLA being oxidation yields higher at alkaline pH. The stoichiometry for the reaction was two thiols oxidized per peroxynitrite. LA formation accounted for approximately 50% DHLA consumption at pH 7.4, probably reflecting secondary reactions between LA and peroxynitrite. Indeed, peroxynitrous acid reacted with LA with an apparent second-order rate constant (k(2app)) of 1400 M(-1) s(-1) at pH 7.4 and 37 degrees C. Nitrite and LA-thiosufinate were formed as reaction products. Surprisingly, the k(2app) for peroxynitrite-dependent DHLA oxidation was only 250 M(-1) s(-1) per thiol, at pH 7.4 and 37 degrees C. Testing various low-molecular-weight thiols, we found that an increase in the thiol pK (pK(SH)) value correlated with a decrease of k(2app) for the reaction with peroxynitrite at pH 7.4. The pK(SH) for DHLA is 10.7, in agreement with its modest reactivity with peroxynitrite.  相似文献   

2.
The cytotoxicity of catechols has been ascribed to covalent binding of the omicron-quinone oxidation products to proteins through sulfhydryl groups. The nature of the covalent binding was studied with dopaquinone formed on tyrosinase oxidation of 3,4-dihydroxyphenylalanine (DOPA). After acid hydrolysis of the reaction products, cysteinyldopas liberated (protein-bound cysteinyldopas) were determined by HPLC with electrochemical detection. When 0.1 mM DOPA was oxidized in the presence of 0.2 mM bovine serum albumin, alcohol dehydrogenase or isocitrate dehydrogenase, protein-bound cysteinyldopas were formed in yields of 5.4, 44, or 33%, respectively. The covalent binding was almost completely inhibited by 1 mM cysteine or 1 mM ascorbic acid, but 10 mM lysine had no effect. These results unambiguously demonstrate that dopaquinone can bind with proteins mostly through sulfhydryl groups.  相似文献   

3.
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.  相似文献   

4.
Proteins containing the post-translationally modified amino acid L-3,4-dihydroxyphenylalanine (DOPA) undergo autosclerotization as a means of assuring cohesive resilience in many structural matrices found in nature. To explore the chemical mechanism of sclerotization, we examined the oxidation products of relatively simple analogs of a peptidyl DOPA residue, such as N-acetylDOPA ethyl ester and N-acetyldopamide, together with those of several oligopeptides. Oxidation, induced by either of two catecholoxidases or by sodium periodate, resulted in the Lewis base catalyzed formation of derivatives of the unusual amino acid 3,4-dihydroxy-alpha,beta-dehydroDOPA (delta DOPA). The N-acetyl delta DOPA ethyl ester representative of this group of derivatives was characterized by NMR and uv spectroscopy. A variety of peptides developed analogous uv spectra upon oxidation. A similar reaction was observed upon oxidation of 3,4-dihydroxyphenylpropanoic (dihydrocaffeic) acid, but not after oxidation of N-acetyldopamine. Evidence is presented that this conversion is the result of a rearrangement of the DOPA quinone moiety to its delta DOPA tautomer, and that this tautomerization can be a dominant fate for peptidyl DOPA quinone, provided a Lewis base catalyst is available and competing reactions are minimized. Formation of delta DOPA in natural or synthetic polymers would increase the variety of crosslinks available to sclerotizing matrices. delta DOPA has been found in naturally occurring oligopeptides isolated by other workers from several marine species.  相似文献   

5.
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups. In the case of PEG-DOPAs containing two or more DOPA endgroups, oxidative polymerization resulted in polymer network formation and rapid gelation. The amount of time required for gelation of aqueous PEG-DOPA solutions was found to be as little as 1 min and was dependent on the polymer architecture as well as the type and concentration of oxidizing reagent used. Analysis of reaction mixtures by UV-vis spectroscopy allowed the identification of reaction intermediates and the elucidation of reaction pathways. On the basis of the observed reaction intermediates, oxidation of the catechol side chain of DOPA resulted in the formation of highly reactive DOPA-quinone, which further reacted to form cross-linked products via one of several pathways, depending on the presence or absence of N-terminal protecting groups on the PEG-DOPA. N-Boc protected PEG-DOPA cross-linked via phenol coupling and quinone methide tanning pathways, whereas PEG-DOPA containing a free amino group cross-linked via a pathway that resembled melanogenesis. Similar differences were observed for the rate of gel formation as well as the molecular weight between cross-links ((-)M(c)), calculated using equilibrium swelling and the Flory-Rehner equation.  相似文献   

6.
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.  相似文献   

7.
The abilities of dihydrolipoic acid (DHLA) to scavenge peroxynitrite (ONOO?), galvinoxyl radical, 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) cation radical (ABTS+?), and 2,2′‐diphenyl‐1‐picrylhydrazyl radical (DPPH) were higher than those of lipoic acid (LA). The effectiveness of DHLA to protect methyl linoleate against 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH)‐induced oxidation was about 2.2‐fold higher than that of LA, and DHLA can retard the autoxidation of linoleic acid (LH) in the β‐carotene‐bleaching test. DHLA can also trap ~0.6 radicals in AAPH‐induced oxidation of LH. Moreover, DHLA can scavenge ~2.0 radicals in AAPH‐induced oxidation of DNA and AAPH‐induced hemolysis of erythrocytes, whereas LA can scavenge ~1.5 radicals at the same experimental conditions. DHLA can protect erythrocytes against hemin‐induced hemolysis, but accelerate the degradation of DNA in the presence of Cu2+. Therefore, the antioxidant capacity of –SH in DHLA is higher than S‐S in LA. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:216–223, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20378  相似文献   

8.
Sodium zinc dihydrolipoylhistidinate (DHLHZn) is a compound of Zn(2+)/dihydrolipoic acid derivate complex, which was developed for cosmetic/medical use. To characterize DHLHZn as a novel skin-lightening agent, inhibitory actions of DHLHZn on tyrosinase (including its reaction pathway) have been elucidated in this study. In a B16 melanoma cell system, DHLHZn was active in suppressing the synthesis of melanins as well as alpha-arbutin, well known as a depigmenting drug. Furthermore, in a tyrosinase assay, DHLHZn showed stronger inhibitory effect on DOPAchrome formation than other tyrosinase inhibitors such as kojic acid. Our previous report demonstrated that the sulfhydryl groups of lipoyl motif react with DOPAquinone to form lipoyl DOPA conjugates. We therefore postulated that conjugated products between DHLHZn and DOPAquinone might be formed. Upon reaction of DHLHZn with L-DOPA following tyrosinase-catalyzed oxidation, the formation of DHLH DOPA conjugated products was confirmed by HPLC-tandem mass spectrometry using reserpine as the internal standard. In addition, the inhibitory kinetics analyzed by a Lineweaver-Burk plot exhibited the reversibility of DHLHZn as a competitive inhibitor with a KI value of 0.35 microM. These results indicate that this covalent reaction might contribute to alternating DOPAquinone, which is a tyrosinase reaction product, and result in the competitive inhibitory effect of DHLHZn on DOPAchrome formation. DHLHZn may thus serve as a potentially effective skin-lightening agent, an effectiveness that is based on the compound's covalent scavenging of DOPAquinone resulting in depigmentation.  相似文献   

9.
Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2), derived by enzymatic oxidation of cellular dihomogammalinolenic acid (DHLA) and arachidonic acid (AA), respectively, have diverse and, at times, distinct biological actions. It has been suggested that PGE1 specifically inhibits a variety of inflammatory processes, and, in light of the potential therapeutic benefit of PGE1 and its fatty acid precursor in inflammatory disorders, there is growing interest in the biochemical mechanisms which determine the balance between PGE1 and PGE2 synthesis. Metabolic studies in this area have been hampered by the difficulties in measuring the extremely small masses of these prostaglandins which are generated in cell culture systems. We studied the regulation of PGE1 versus PGE2 synthesis using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Because EFD-1 cells contain no endogenous AA or DHLA, we were able to replete the cells with AA and DHLA of known specific activities; thus, the mass of both cellular AA and DHLA, and synthesized PGE1 and PGE2, could be accurately determined. The major finding of this study is that production of PGE2 was highly favored over production of PGE1 due to preferential incorporation of AA versus DHLA into, and release from, the total cellular phospholipid pool. Further, we correlated the selective release of AA versus DHLA from total cellular phospholipids with the selective incorporation of AA versus DHLA into specific phospholipid pools. In addition, we showed that conversion of DHLA to AA by delta 5 desaturase was enhanced by increasing the cellular mass of n-6 fatty acids and by increasing the cell proliferative activity. Together, these results indicate that the relative abundance of PGE2 versus PGE1 in vivo is not merely a function of the relative abundance of AA versus DHLA in tissues, but also relates to markedly different cellular metabolism of these two fatty acids.  相似文献   

10.
Chlorogenic acid (1), a cancer chemopreventive agent widely found in fruits, tea and coffee, undergoes efficient conjugation with glutathione (GSH), in the presence of horseradish peroxidase/H(2)O(2) or tyrosinase at pH 7.4, to yield three main adducts that have been isolated and identified as 2-S-glutathionylchlorogenic acid (3), 2,5-di-S-glutathionylchlorogenic acid (4) and 2,5,6-tri-S-glutathionylchlorogenic acid (5) by extensive NMR analysis. The same pattern of products could be obtained by reaction of 1 with GSH in the presence of nitrite ions in acetate buffer at pH 4. Mechanistic experiments suggested that oxidative conjugation reactions proceed by sequential nucleophilic attack of GSH on ortho-quinone intermediates. Overall, these results provide the first complete spectral characterization of the adducts generated by biomimetic oxidation of 1 in the presence of GSH, and disclose a new possible nitrite-mediated conjugation pathway of 1 with GSH at acidic pH of physiological relevance.  相似文献   

11.
Diazotized 3-aminopyridine adenine dinucleotide has been found to modify four sulfhydryl groups per molecule of enzyme during the complete inactivation of yeast alcohol dehydrogenase. The reaction of sulfhydryl groups was indicated by titration studies with 5,5-dithiobis(2-nitrobenzoic acid) as well as isolation and quantitation of the cysteinyl derivative released by acid hydrolysis of the modified enzyme. The cysteinyl derivative was identified as S-(3-pyridyl)cysteine. Authentic S-(3-pyridyl)cystein was synthesized and structurally characterized for these studies. Diazonium-sulfhydryl reactions were demonstrated for a number of diazonium derivatives with cysteine, homocysteine, glutathione, and mercaptoethanol at 0-4 degrees and neutral pH. Second order rate constants were determined in reactions of these sulfhydryl compounds with diazotized 1-methyl-3-aminopyridinium chloride, diazotized 3-aminopyridine adenine dinucleotide, and diazotized 3-aminopyridine adenine dinucleotide phosphate.  相似文献   

12.
Generation of superoxide anion and hydrogen peroxide during enzymatic oxidation of 3-(3,4-dihydroxyphenyl)-DL-alanine (DOPA) has been studied. The ability of DOPA to react with O2*- has been revealed. EPR spectrum of DOPA-semiquinone formed upon oxidation of DOPA by O2*- was observed using spin stabilization technique of ortho-semiquinones by Zn2+ ions. Simultaneously, the oxidation of DOPA by O2*- was found to produce hydrogen peroxide (H2O2). The analysis of H2O2 formation upon oxidation of DOPA by O2*- using 1-hydroxy-3-carboxy-pyrrolidine (CP-H), and SOD as competitive reagents for superoxide provides consistent values of the rate constant for the reaction between DOPA and O2*- being equal to (3.4+/-0.6)x10(5) M(-1) s(-1).The formation of H2O2 during enzymatic oxidation of DOPA by phenoloxidase (PO) has been shown. The H2O2 production was found to be SOD-sensitive. The inhibition of H2O2 production by SOD was about 25% indicating that H2O2 is produced both from superoxide anion and via two-electron reduction of oxygen at the enzyme. The attempts to detect superoxide production during enzymatic oxidation of DOPA using a number of spin traps failed apparently due to high value of the rate constant for DOPA interaction with O2*-.  相似文献   

13.
Dihydrolipoic acid (DHLA) is a constituent of cellular energy metabolism, where it cycles between the oxidized and reduced form. The two thiol residues of DHLA make this biomolecule susceptible to most radical species and prevent Fenton-type reactions by chelating free iron. In this study we present a novel mode of action by which DHLA exerts antioxidant function in combination with coenzyme Q (ubiquinone). DHLA was found to reduce ubiquinone to ubiquinol by the transfer of a pair of electrons, thereby increasing the antioxidant capacity of coenzyme Q in biomembranes. In addition, ubisemiquinone, which was earlier shown to be an active oxygen radical source when existing in the anionic form, is removed from equilibrium by the addition of a single electron from DHLA. The high reactivity of DHLA with this potentially deleterious ubisemiquinone species not only prevents the formation of prooxidants, it also keeps ubiquinone in its antioxidant active form. Experimental data of this study demonstrate a superadditive effect of ubiquinone in combination with DHLA in preventing peroxidation of biomembranes.  相似文献   

14.
Myeloperoxidase (MPO)-catalyzed one-electron oxidation of endogenous phenolic constituents (e.g., antioxidants, hydroxylated metabolites) and exogenous compounds (e.g., drugs, environmental chemicals) generates free radical intermediates: phenoxyl radicals. Reduction of these intermediates by endogenous reductants, i.e. recycling, may enhance their antioxidant potential and/or prevent their potential cytotoxic and genotoxic effects. The goal of this work was to determine whether generation and recycling of MPO-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), by physiologically relevant intracellular reductants such as ascorbate/lipoate could be demonstrated in intact MPO-rich human leukemia HL-60 cells. A model system was developed to show that MPO/H(2)O(2)-catalyzed PMC phenoxyl radicals (PMC*) could be recycled by ascorbate or ascorbate/dihydrolipoic acid (DHLA) to regenerate the parent compound. Absorbance measurements demonstrated that ascorbate prevents net oxidation of PMC by recycling the phenoxyl radical back to the parent compound. The presence of DHLA in the reaction mixture containing ascorbate extended the recycling reaction through regeneration of ascorbate. DHLA alone was unable to prevent PMC oxidation. These conclusions were confirmed by direct detection of PMC* and ascorbate radicals formed during the time course of the reactions by EPR spectroscopy. Based on results in the model system, PMC* and ascorbate radicals were identified by EPR spectroscopy in ascorbate-loaded HL-60 cells after addition of H(2)O(2) and the inhibitor of catalase, 3-aminotriazole (3-AT). The time course of PMC* and ascorbate radicals was found to follow the same reaction sequence as during their recycling in the model system. Recycling of PMC by ascorbate was also confirmed by HPLC assays in HL-60 cells. Pre-loading of HL-60 cells with lipoic acid regenerated ascorbate and thus increased the efficiency of ascorbate in recycling PMC*. Lipoic acid had no effect on PMC oxidation in the absence of ascorbate. Thus PMC phenoxyl radical does not directly oxidize thiols but can be recycled by dihydrolipoate in the presence of ascorbate. The role of phenoxyl radical recycling in maintaining antioxidant defense and protecting against cytotoxic and genotoxic phenolics is discussed.  相似文献   

15.
Conjugates of recombinant human tumor necrosis factor alpha (TNFα) and alendronic acid linked through the protein sulfhydryl, carboxyl, and amino groups were obtained with crosslinking agents of different types. The conjugation reactions were conducted in solution and on a solid phase. Unlike the conjugation reactions in solution, the method involving immobilization of active components on a hydroxyapatite column was shown to result in the conjugates with a specified stoichiometry and a high degree of homogeneity. The TNFα conjugates retained the specific cytolytic activity and demonstrated the higher affinity to hydroxyapatite, an analogue of the bone mineral matrix, than TNFα.  相似文献   

16.
Tyrosinase is involved in the synthesis of melanin in the skin and hair as well as neuromelanin in the brain. This rate limiting enzyme catalyzes two critical steps (reactions) in melanogenesis; the hydroxylation of tyrosine to form DOPA and the subsequent oxidation of DOPA into dopaquinone. Several new aminophenol derivatives have been synthesized based on structure–activity relationship studies of N-(4-hydroxyphenyl)retinamide (1), a derivative of retinoic acid. In order to find new tyrosinase inhibitors, we investigated the effects of these p-aminophenols, including p-decylaminophenol (3), on the activity of mushroom tyrosinase. Compound 3 was the most potent agent, showing significant inhibition as compared with control. The inhibitory effects of 3 on tyrosinase activities were greater than seen with kojic acid, a well-known potent inhibitor of tyrosinase activity, which also causes adverse effects, including rash and dermatitis. A Lineweaver–Burk kinetic analysis of inhibition showed that 3 suppresses tyrosinase activity in a non-competitive fashion for both substrates, tyrosine and DOPA. These results suggest that 3 might be a useful alternative to kojic acid as a tyrosinase inhibitor.  相似文献   

17.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-gamma-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 A. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the V(max)/K(m) for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega-half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.  相似文献   

18.
Two pigmentation related genes have recently been cloned which map to the brown (b) and albino (c) loci of mice; these loci influence the quality and quantity, respectively, of melanin produced by melanocytes. Both these gene products are biochemically similar and have extensive amino acid sequence similarity to each other and to lower forms of tyrosinase (EC 1.14.18.1), a copper binding enzyme responsible for melanin production. In order to characterize the catalytic activities of these molecules, we have synthesized peptides and prepared antibodies to them which specifically recognize the gene products in question. By use of immune affinity purification protocols, we have isolated the proteins encoded by the brown and albino loci and have determined that both have the catalytic functions ascribed to tyrosinase, i.e. hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to DOPAquinone. These are the critical reactions to melanogenesis since melanin pigment can be spontaneously produced from those products. The specific activity of the albino locus encoded product is considerably higher than that of the protein encoded by the brown locus, although the latter protein is present in higher quantity in melanocytes than is the protein encoded by the albino locus. These results are surprising since it was anticipated that tyrosinase was the product of single gene locus, and suggest that regulation of melanogenesis in mammals is controlled at the enzymatic level by several different gene products.  相似文献   

19.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   

20.
Lipoic acid is an essential coenzyme in the oxidation of pyruvate and -ketoglutarate. It is easily converted to its reduced form, dihydrolipoic acid (DHLA), in vivo thereby forming a redox pair. DHLA is important in the maintenance and integrity of specific neuronal and subcellular membranes. In the present study we investigated the effect of DHLA on the response of isolated rat bladder strips to repetitive field stimulation (FS), a method used to exhaust synaptic stores of acetylcholine resulting in nerve and synaptic damage.Isolated strips of rat urinary bladders were separated into 4 groups. Group 1 strips were incubated with choline + acetyl-CoA; Group 2 strips with choline, acetyl-CoA + DHLA; and Group 3 with DHLA. Group 4 strips were controls. All strips in Groups 1–3 were subjected to 2 h of repetitive FS followed by 2 h of recovery.DHLA had no effect on the progressive decrease in contractile response observed during repetitive stimulation. However, strips incubated in the presence of DHLA showed a significantly greater degree of recovery than strips incubated in the absence of DHLA. We believe that the protection of the contractile response is related to DHLA's ability to protect nerve and/or muscle membranes from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号