首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

2.
Kretulskie AM  Spratt TE 《Biochemistry》2006,45(11):3740-3746
The mechanism by which purine-purine mispairs are formed and extended was examined with the high-fidelity Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease activity inactivated. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. A decrease in rate associated with a 7-deazapurine substitution would suggest that the nucleotide is in a syn conformation in a Hoogsteen base pair with the opposite base. During mispair formation, the k(pol)/K(d) values for the insertion of dATP opposite A (dATP/A) as well as dATP/G and dGTP/G were decreased greater than 10-fold with the deazapurine in the dNTP. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the syn conformation and the template base in the anti conformation. During mispair extension, the only decrease in k(pol)/K(d) was associated with the G/G base pair in which 7-deazaguanine was in the template strand. These results as well as previous results [McCain et al. (2005) Biochemistry 44, 5647-5659] in which a hydrogen bond was found between the 3-position of guanine at the primer terminus and Arg668 during G/A and G/G mispair extension indicate that the conformation of the purine at the primer terminus is in the anti conformation during mispair extension. These results suggest that purine-purine mispairs are formed via a Hoogsteen geometry in which the dNTP is in the syn conformation and the template is in the anti conformation. During extension, however, the conformation of the primer terminus changes to an anti configuration while the template base may be in either the syn or anti conformations.  相似文献   

3.
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs.  相似文献   

4.
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.  相似文献   

5.
A Hoogsteen base pair embedded in undistorted B-DNA   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

6.
N6‐methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N6‐methyladenine at a key trans Hoogsteen‐sugar A·G base pair, of which half are methylated in vivo. The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5‐kDa protein and the induced folding of the RNA. Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N6‐methylation of adenine prevents the formation of trans Hoogsteen‐sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson–Crick base pairs) are more susceptible to disruption by N6mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction.  相似文献   

7.
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.  相似文献   

8.
Stable DNA loop structures closed by a novel G.C base-pair have been determined for the single-residue d(GXC) loops (X=A, T, G or C) in low-salt solution by high-resolution nuclear magnetic resonance (NMR) techniques. The closing G.C base-pair in these loops is not of the canonical Watson-Crick type, but adopts instead a unique sheared-type (trans Watson-Crick/sugar-edge) pairing, like those occurring in the sheared mismatched G.A or A.C base-pair, to draw the two opposite strands together. The cytidine residue in the closing base-pair is transformed into the rare syn domain to form two H-bonds with the guanine base and to prevent the steric clash between the G 2NH(2) and the C H-5 protons. Besides, the sugar pucker of the syn cytidine is still located in the regular C2'-endo domain, unlike the C3'-endo domain adopted for the pyrimidines of the out-of-alternation left-handed Z-DNA structure. The facile formation of the compact d(GXC) loops closed by a unique sheared-type G(anti).C(syn) base-pair demonstrates the great potential of the single-stranded d(GXC) triplet repeats to fold into stable hairpins.  相似文献   

9.
Single crystal X-ray diffraction techniques have been used to characterise the molecular structure of the title compound to 2.5A resolution. The structure consists of ten standard Watson-Crick base pairs and two G.A mismatched base pairs. The purine-purine mismatches have guanine in the usual anti orientation with respect to the sugar and adenine in syn orientation. There are two hydrogen bonds formed between the mismatch bases, N-1 and O-6 of guanine with N-7 and N-6 of adenine respectively. The bulky purine-purine mismatches are accommodated with minor perturbation of the sugar-phosphate backbone. There is a slight improvement in base pair overlap at the mismatch sites. Details of the backbone conformation, base stacking interactions and hydration are presented and compared with those of the parent compound d(C-G-C-G-A-A-T-T-C-G-C-G).  相似文献   

10.
Abstract

Single crystal X-ray diffraction techniques have been used to characterise the molecular structure of the title compound to 2.5Å resolution. The structure consists of ten standard Watson-Crick base pairs and two G.A mismatched base pairs. The purine-purine mismatches have guanine in the usual anti orientation with respect to the sugar and adenine in syn orientation. There are two hydrogen bonds formed between the mismatch bases, N-l and 0–6 of guanine with N-7 and N-6 of adenine respectively. The bulky purine-purine mismatches are accommodated with minor perturbation of the sugar-phosphate backbone. There is a slight improvement in base pair overlap at the mismatch sites. Details of the backbone conformation, base stacking interactions and hydration are presented and compared with those of the parent compound d(C-G-C-G-A-A-T-T-C-G-C-G).  相似文献   

11.
Z Gu  A Gorin  B E Hingerty  S Broyde  D J Patel 《Biochemistry》1999,38(33):10855-10870
A solution structural study has been undertaken on the aminofluorene-C8-dG ([AF]dG) adduct located at a single-strand-double-strand d(A1-A2-C3-[AF]G4-C5-T6-A7-C8-C9-A10-T11-C12-C13). d(G14-G15-A16-T17-G18-G19-T20- A21-G22-N23) 13/10-mer junction (N = C or A) using proton-proton distance restraints derived from NMR data in combination with intensity-based relaxation matrix refinement computations. This single-strand-double-strand junction models one arm of a replication fork composed of a 13-mer template strand which contains the [AF]dG modification site and a 10-mer primer strand which has been elongated up to the modified guanine with either its complementary dC partner or a dA mismatch. The solution structures establish that the duplex segment retains a minimally perturbed B-DNA conformation with Watson-Crick hydrogen-bonding retained up to the dC5.dG22 base pair. The guanine ring of the [AF]dG4 adduct adopts a syn glycosidic torsion angle and is displaced into the major groove when positioned opposite dC or dA residues. This base displacement of the modified guanine is accompanied by stacking of one face of the aminofluorene ring of [AF]dG4 with the dC5.dG22 base pair, while the other face of the aminofluorene ring is stacked with the purine ring of the nonadjacent dA2 residue. By contrast, the dC and dA residues opposite the junctional [AF]dG4 adduct site adopt distinctly different alignments. The dC23 residue positioned opposite the adduct site is looped out into the minor groove by the aminofluorene ring. The syn displaced orientation of the modified dG with stacking of the aminofluorene and the looped out position of the partner dC could be envisioned to cause polymerase stalling associated with subsequent misalignment leading to frameshift mutations in appropriate sequences. The dA23 residue positioned opposite the adduct site is positioned in the major groove with its purine ring aligned face down over the van der Waals surface of the major groove and its amino group directed toward the T6.A21 base pair. The Hoogsteen edge of the modified guanine of [AF]dG4 and the Watson-Crick edge of dA23 positioned opposite it are approximately coplanar and directed toward each other but are separated by twice the hydrogen-bonding distance required for pairing. This structure of [AF]dG opposite dA at a model template-primer junctional site can be compared with a previous structure of [AF]dG opposite dA within a fully paired duplex [Norman, D., Abuaf, P., Hingerty, B. E., Live, D. , Grunberger, D., Broyde, S., and Patel, D. J. (1989) Biochemistry 28, 7462-7476]. The alignment of the Hoogsteen edge of [AF]dG (syn) positioned opposite the Watson-Crick edge of dA (anti) has been observed for both systems with the separation greater in the case of the junctional alignment in the model template-primer system. However, the aminofluorene ring is positioned in the minor groove in the fully paired duplex while it stacks over the junctional base pair in the template-primer system. This suggests that the syn [AF]dG opposite dA junctional alignment can be readily incorporated within a duplex by a translation of this entity toward the minor groove.  相似文献   

12.
DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.  相似文献   

13.
The nudged elastic band (NEB) technique has been implemented in AMBER to calculate low-energy paths for conformational changes. A novel simulated annealing protocol that does not require an initial hypothesis for the path is used to sample low-energy paths. This was used to study the conformational change of an RNA cis Watson-Crick/Hoogsteen GG non-canonical pair, with one G syn around the glycosidic bond and the other anti. A previous solution structure, determined by NMR-constrained modeling, demonstrated that the GG pairs change from (syn)G-(anti)G to (anti)G-(syn)G in the context of duplex r(GCAGGCGUGC) on the millisecond timescale. The set of low-energy paths found by NEB show that each G flips independently around the glycosidic bond, with the anti G flipping to syn first. Guanine bases flip without opening adjacent base-pairs by protruding into the major groove, accommodated by a transient change by the ribose to C2'-exo sugar pucker. Hydrogen bonds between bases and the backbone, which lower the energetic barrier to flipping, are observed along the path. The results show the plasticity of RNA base-pairs in helices, which is important for biological processes, including mismatch repair, protein recognition, and translation. The modeling of the GG conformational change also demonstrates that NEB can be used to discover non-trivial paths for macromolecules and therefore NEB can be used as an exploratory method for predicting putative conformational change paths.  相似文献   

14.
The CGG repeats are present in the 5'-untranslated region (5'-UTR) of the fragile X mental retardation gene FMR1 and are associated with two diseases: fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X syndrome (FXS). FXTAS occurs when the number of repeats is 55-200 and FXS develops when the number exceeds 200. FXTAS is an RNA-mediated disease in which the expanded CGG tracts form stable structures and sequester important RNA binding proteins. We obtained and analysed three crystal structures of double-helical CGG repeats involving unmodified and 8-Br modified guanosine residues. Despite the presence of the non-canonical base pairs, the helices retain an A-form. In the G-G pairs one guanosine is always in the syn conformation, the other is anti. There are two hydrogen bonds between the Watson-Crick edge of G(anti) and the Hoogsteen edge of G(syn): O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows affinity for binding ions in the major groove. G(syn) causes local unwinding of the helix, compensated elsewhere along the duplex. CGG helical structures appear relatively stable compared with CAG and CUG tracts. This could be an important factor in the RNA's ligand binding affinity and specificity.  相似文献   

15.
Shankar N  Kennedy SD  Chen G  Krugh TR  Turner DH 《Biochemistry》2006,45(39):11776-11789
Internal loops play an important role in structure and folding of RNA and in recognition of RNA by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5' 1009CUAAG1013 3'/3' 1168GAAGC1164 5' and 5' 998CUAAG1002 3'/3' 1157GAAGC1153 5' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex 5' 1GGCUAAGAC9 3'/3' 18CCGAAGCUG10 5'. The internal loop forms a different structure in solution and in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson-Crick UA pair.  相似文献   

16.
Human DNA polymerase iota (Pol iota) differs from other DNA polymerases in that it exhibits a marked template specificity, being more efficient and accurate opposite template purines than opposite pyrimidines. The crystal structures of Pol iota with template A and incoming dTTP and with template G and incoming dCTP have revealed that in the Pol iota active site, the templating purine adopts a syn conformation and forms a Hoogsteen base pair with the incoming pyrimidine which remains in the anti conformation. By using 2-aminopurine and purine as the templating residues, which retain the normal N7 position but lack the N(6) of an A or the O(6) of a G, here we provide evidence that whereas hydrogen bonding at N(6) is dispensable for the proficient incorporation of a T opposite template A, hydrogen bonding at O(6) is a prerequisite for C incorporation opposite template G. To further analyze the contributions of O(6) and N7 hydrogen bonding to DNA synthesis by Pol iota, we have examined its proficiency for replicating through the (6)O-methyl guanine and 8-oxoguanine lesions, which affect the O(6) and N7 positions of template G, respectively. We conclude from these studies that for proficient T incorporation opposite template A, only the N7 hydrogen bonding is required, but for proficient C incorporation opposite template G, hydrogen bonding at both the N7 and O(6) is an imperative. The dispensability of N(6) hydrogen bonding for proficient T incorporation opposite template A has important biological implications, as that would endow Pol iota with the ability to replicate through lesions which impair the Watson-Crick hydrogen bonding potential at both the N1 and N(6) positions of templating A.  相似文献   

17.
18.
The non-detectability of NH...N hydrogen bonds in nucleic acids due to exchange broadened imino/amino protons has recently been addressed via the use of non-exchangeable protons for detecting internucleotide 2hJ(NN) couplings. In these applications, the appropriate non-exchangeable proton is separated by two bonds from the NH...N bond. In this paper, we extend the scope of this approach to protons which are separated by four bonds from the NH...N moiety. Specifically, we consider the case of the commonly occurring sheared G x A mismatch alignment, in which we use the adenine H2 proton to report on the (A)N6H6(1.2)...N3(G) hydrogen bond, in the presence of undetectable, exchange broadened N6H6(1.2) protons. Two sequences, the 'straight-through' (H6)N6N3H2 and 'out-and-back' H2N6N3 experiments, are presented for observing these correlations in H2O and D2O solution, respectively. The sequences are demonstrated on two uniformly 15N,13C labelled DNA samples: d(G1G2G3T4T5C6A7G8G9)2, containing a G3 x (C6-A7) triad involving a sheared G3 x A7 mismatch, and d(G1G2G3C4A5G6G7T8)4, containing an A5 x (G3 x G6 x G3 x G6) x A5 hexad involving a sheared G3 x A5 mismatch.  相似文献   

19.
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.  相似文献   

20.
The crystal structure of a DNA octamer d(GCGTACGC) complexed to an antitumor antibiotic, triostin A, has been solved and refined to 2.2 A resolution by x-ray diffraction analysis. The antibiotic molecule acts as a true bis intercalator surrounding the d(CpG) sequence at either end of the unwound right-handed DNA double helix. As previously observed in the structure of triostin A-d(CGTACG) complex (A.H.-J. Wang, et. al., Science, 225, 1115-1121 (1984)), the alanine amino acid residues of the drug molecule form sequence-specific hydrogen bonds to guanines in the minor groove. The two central A.T base pairs are in Hoogsteen configuration with adenine in the syn conformation. In addition, the two terminal G.C base pairs flanking the quinoxaline rings are also held together by Hoogsteen base pairing. This is the first observation in an oligonucleotide of. Hoogsteen G.C base pairs where the cytosine is protonated. The principal functional components of a bis-intercalative compound are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号