首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants has hindered research efforts to study the role of this organelle at later developmental stages. Thus, to investigate the role of cilia during limb development, we generated a conditional allele of the IFT protein Ift88 (polaris). Using the Cre-lox system, we disrupted cilia on different cell populations within the developing limb. While deleting cilia in regions of the limb ectoderm had no overt effect on patterning, disruption in the mesenchyme resulted in extensive polydactyly with loss of anteroposterior digit patterning and shortening of the proximodistal axis. The digit patterning abnormalities were associated with aberrant Shh pathway activity, whereas defects in limb outgrowth were due in part to disruption of Ihh signaling during endochondral bone formation. In addition, the limbs of mesenchymal cilia mutants have ectopic domains of cells that resemble chondrocytes derived from the perichondrium, which is not typical of Indian hedgehog mutants. Overall these data provide evidence that IFT is essential for normal formation of the appendicular skeleton through disruption of multiple signaling pathways.  相似文献   

2.
Tsujikawa M  Malicki J 《Neuron》2004,42(5):703-716
Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.  相似文献   

3.
The membranes of all eukaryotic motile (9 + 2) and immotile primary (9 + 0) cilia harbor channels and receptors involved in sensory transduction (reviewed by). These membrane proteins are transported from the cytoplasm onto the ciliary membrane by vesicles targeted for exocytosis at a point adjacent to the ciliary basal body. Here, we use time-lapse fluorescence microscopy to demonstrate that select GFP-tagged sensory receptors undergo rapid vectorial transport along the entire length of the cilia of Caenorhabditis elegans sensory neurons. Transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 move in ciliary membranes at rates comparable to the intraflagellar transport (IFT) machinery located between the membrane and the underlying axonemal microtubules. OSM-9 motility is disrupted in certain IFT mutant backgrounds. Surprisingly, motility of transient receptor potential polycystin (TRPP) channel PKD-2 (polycystic kidney disease-2), a mechano-receptor, was not detected. Our study demonstrates that IFT, previously shown to be necessary for transport of axonemal components, is also involved in the motility of TRPV membrane protein movement along cilia of C. elegans sensory cells.  相似文献   

4.
Kohl L  Robinson D  Bastin P 《The EMBO journal》2003,22(20):5336-5346
Flagella and cilia are elaborate cytoskeletal structures conserved from protists to mammals, where they fulfil functions related to motility or sensitivity. Here we demonstrate novel roles for the flagellum in the control of cell size, shape, polarity and division of the protozoan Trypanosoma brucei. To investigate the function of the flagellum, its formation was perturbed by inducible RNA interference silencing of com ponents required for intraflagellar transport, a dynamic process necessary for flagellum assembly. First, we show that down-regulation of intraflagellar transport leads to assembly of a shorter flagellum. Strikingly, cells with a shorter flagellum are smaller, with a direct correlation between flagellum length and cell size. Detailed morphogenetic analysis reveals that the tip of the new flagellum defines the point where cytokinesis is initiated. Secondly, when new flagellum formation is completely blocked, non-flagellated cells are very short, lose their normal shape and polarity, and fail to undergo cytokinesis. We show that flagellum elongation controls formation of cytoskeletal structures (present in the cell body) that act as molecular organizers of the cell.  相似文献   

5.
Han YG  Kwok BH  Kernan MJ 《Current biology : CB》2003,13(19):1679-1686
BACKGROUND: Intraflagellar transport (IFT) uses kinesin II to carry a multiprotein particle to the tips of eukaryotic cilia and flagella and a nonaxonemal dynein to return it to the cell body. IFT particle proteins and motors are conserved in ciliated eukaryotes, and IFT-deficient mutants in algae, nematodes, and mammals fail to extend or maintain cilia and flagella, including sensory cilia. In Drosophila, the only ciliated cells are sensory neurons and sperm. no mechanoreceptor potential (nomp) mutations have been isolated that affect the differentiation and function of ciliated sense organs. The nompB gene is here shown to encode an IFT protein. Its mutant phenotypes reveal the consequences of an IFT defect in an insect. RESULTS: Mechanosensory and olfactory neurons in nompB mutants have missing or defective cilia. nompB encodes the Drosophila homolog of the IFT complex B protein IFT88/Polaris/OSM-5. nompB is expressed in the ciliated sensory neurons, and a functional, tagged NOMPB protein is located in sensory cilia and around basal bodies. Surprisingly, nompB mutant males produce normally elongated, motile sperm. Neuronally restricted expression and male germline mosaic experiments show that nompB-deficient sperm are fully functional in transfer, competition, and fertilization. CONCLUSIONS: NOMPB, the Drosophila homolog of IFT88, is required for the assembly of sensory cilia but not for the extension or function of the sperm flagellum. Assembly of this extremely long axoneme is therefore independent of IFT.  相似文献   

6.
7.
Intraflagellar transport and cilium-based signaling   总被引:1,自引:0,他引:1  
Scholey JM  Anderson KV 《Cell》2006,125(3):439-442
Cilia are specialized structures that not only play diverse roles in cell motility but also transmit signals to the cytoplasm and nucleus to control gene expression, cell function, animal development, and behavior. Cilia are assembled and maintained by the intraflagellar transport (IFT) machinery, which coordinates rapid, bidirectional transport between the cell body and the distal tip of the cilium. A new study (Wang et al., 2006) illuminates the role of IFT in cilium-based signaling during mating in the alga Chlamydomonas.  相似文献   

8.
Intraflagellar transport involves the movement of large protein particles along ciliary microtubules and is required for the assembly and maintenance of eukaryotic cilia and flagella. Intraflagellar-transport defects in the mouse cause a range of diseases including polycystic kidney disease, retinal degeneration and the laterality abnormality situs inversus, highlighting the important role that motile, sensory and primary cilia play in vertebrates.  相似文献   

9.
Flagellum formation by ubiquinone- and menaquinone-deficient mutant strains of Escherichia coli K-12 was studied under both aerobic and anaerobic growth conditions. Ubiquinone was found to be obligatory for aerobic flagellum formation but could be replaced by menaquinone for anaerobic flagellum formation. A mutant devoid of both quinones was immotile aerobically as well as anaerobically. Hence, the respective electron transport system is obligatory for flagellum formation in Escherichia coli.  相似文献   

10.
11.
Background information. The assembly and maintenance of cilia depend on IFT (intraflagellar transport) mediated by molecular motors and their interplay with IFT proteins. Here, we have analysed the involvement of IFT proteins in the ciliogenesis of mammalian photoreceptor cilia. Results. Electron microscopy revealed that ciliogenesis in mouse photoreceptor cells follows an intracellular ciliogenesis pathway, divided into six distinct stages. The first stages are characterized by electron‐dense centriolar satellites and a ciliary vesicle, whereas the formations of the ciliary shaft and the light‐sensitive outer segment discs are features of the later stages. IFT proteins were associated with ciliary apparatus during all stages of photoreceptor cell development. Conclusions. Our data conclusively provide evidence for the participation of IFT proteins in photoreceptor cell ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium. In advanced stages of ciliogenesis the ciliary localization of IFT proteins indicates a role in IFT as is seen in mature cilia. A prominent accumulation of IFT proteins in the periciliary cytoplasm at the base of the cilia in these stages most probably resembles a reserve pool of IFT molecules for further delivery into the growing ciliary shaft and their subsequent function in IFT. Nevertheless, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis may indicate roles of IFT proteins beyond their well‐established function for IFT in mature cilia and flagella.  相似文献   

12.
13.
14.
We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.  相似文献   

15.
Bellofatto V 《Trends in parasitology》2007,23(5):187-9; discussion 190
Parasites of the Trypanosomatidae family are unable to synthesize purines. Instead, they rely on their hosts to supply these necessary compounds. The article by Gudin et al. identifies three transport mechanisms of the equilibrative nucleoside transporter family by which nucleosides and nucleobases are transported in this medically important family of organisms. The work by Gudin et al. characterizes the dynamics of these transporters and points to further areas for future genetic and therapeutic experiments.  相似文献   

16.
In legume nitrogen-fixing symbioses, rhizobial nod genes are obligatory for initiating infection thread formation and root nodule development. Here we show that the common nod genes, nodD1ABC , whose products synthesize core Nod factor, a chitin-like oligomer, are also required for the establishment of the three-dimensional architecture of the biofilm of Sinorhizobium meliloti . Common nod gene mutants form a biofilm that is a monolayer. Moreover, adding Nod Factor antibody to S. meliloti cells inhibits biofilm formation, while chitinase treatment disrupts pre-formed biofilms. These results attest to the involvement of core Nod factor in rhizobial biofilm establishment. However, luteolin, the plant-derived inducer of S. meliloti 's nod genes, is not required for mature biofilm formation, although biofilm establishment is enhanced in the presence of this flavonoid inducer. Because biofilm formation is plant-inducer-independent and because all nodulating rhizobia, both alpha- and beta-proteobacteria have common nod genes, the role of core Nod factor in biofilm formation is likely to be an ancestral and evolutionarily conserved function of these genes.  相似文献   

17.
Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA-binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.  相似文献   

18.
IFT172, also known as Selective Lim-domain Binding protein (SLB), is a component of the intraflagellar transport (IFT) complex. In order to evaluate the biological role of the Ift172 gene, we generated a loss-of-function mutation in the mouse. The resulting Slb mutant embryos die between E12.5 and 13.0, and exhibit severe cranio-facial malformations, failure to close the cranial neural tube, holoprosencephaly, heart edema and extensive hemorrhages. Cilia outgrowth in cells of the neuroepithelium is initiated but the axonemes are severely truncated and do not contain visible microtubules. Morphological and molecular analyses revealed a global brain-patterning defect along the dorsal-ventral (DV) and anterior-posterior (AP) axes. We demonstrate that Ift172 gene function is required for early regulation of Fgf8 at the midbrain-hindbrain boundary and maintenance of the isthmic organizer. In addition, Ift172 is required for proper function of the embryonic node, the early embryonic organizer and for formation of the head organizing center (the anterior mesendoderm, or AME). We propose a model suggesting that forebrain and mid-hindbrain growth and AP patterning depends on the early function of Ift172 at gastrulation. Our data suggest that the formation and function of the node and AME in the mouse embryo relies on an indispensable role of Ift172 in cilia morphogenesis and cilia-mediated signaling.  相似文献   

19.
Wang Q  Pan J  Snell WJ 《Cell》2006,125(3):549-562
Primary cilia are widely used for signal transduction during development and in homeostasis and are assembled and maintained by intraflagellar transport (IFT). Here, we have dissected the role of IFT in signaling within the flagella (structural and functional counterparts of cilia) of the biflagellated green alga Chlamydomonas. Using a conditional IFT mutant enables us to deplete the IFT machinery from intact, existing flagella. We identify a cGMP-dependent protein kinase (CrPKG) within flagella as the substrate of a protein tyrosine kinase activated by flagellar adhesion during fertilization. We demonstrate that flagellar adhesion stimulates association of CrPKG with a new flagellar compartment. Moreover, formation of the compartment requires IFT, and IFT particles themselves are part of the compartment. Our results lead to a model in which the IFT machinery is required not only for assembling cilia and flagella but also for organizing a signaling pathway within the organelles during cilium-generated signaling.  相似文献   

20.
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号