首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recoverin is cotranslationally modified by the covalent linkage of a myristoyl group to its N terminus. It is a member of a family of Ca(2+)-myristoyl switch proteins. Recombinant myristoylated revoverin is currently produced by the cotransformation of bacteria with recoverin and an enzyme that allows N-myristoylation and by supplementing the culture medium with myristic acid. A large variation in the myristoylation level of recoverin and in the amount of myristic acid supplied to the culture medium can be found in the literature. Moreover, although it is known to strongly affect bacterial growth, the amount of ethanol used to solubilize myristic acid is only scarcely mentioned. To improve our understanding of the parameters responsible for recombinant recoverin myristoylation, the effects of myristic acid and ethanol on recoverin myristoylation and expression levels have been systematically studied. In addition, a single-step purification procedure to produce purified myristoylated and nonmyristoylated recombinant recoverin has also been devised. Finally, sodium myristate has been used as an efficient alternative substrate to achieve high myristoylation and expression levels of recoverin. Given that a large number of proteins are myristoylated, these procedures could be applied to several other proteins in addition to recoverin.  相似文献   

2.
Recoverin is a member of the neuronal calcium sensor (NCS) family of EF-hand calcium binding proteins. In a visual cycle of photoreceptor cells, recoverin regulates activity of rhodopsin kinase in a Ca2+-dependent manner. Like all members of the NSC family, recoverin contains a conserved cysteine (Cys38) in nonfunctional EF-hand 1. This residue was shown to be critical for activation of target proteins in some members of the NCS family but not for interaction of recoverin with rhodopsin kinase. Spectrophotometric titration of Ca2+-loaded recoverin gave 7.6 for the pKa value of Cys38 thiol, suggesting partial deprotonation of the thiol in vivo conditions. An ability of recoverin to form a disulfide dimer and thiol-oxidized monomer under mild oxidizing conditions was found using SDS-PAGE in reducing and nonreducing conditions and Ellman's test. Both processes are reversible and modulated by Ca2+. Although formation of the disulfide dimer takes place only for Ca2+-loaded recoverin, accumulation of the oxidized monomer proceeds more effectively for apo-recoverin. The Ca2+ modulated susceptibility of the recoverin thiol to reversible oxidation may be of potential importance for functioning of recoverin in photoreceptor cells.  相似文献   

3.
In photoreceptor cells the Ca2+-binding protein recoverin controls phosphorylation of the visual receptor rhodopsin by inhibiting rhodopsin kinase (GRK-1). It can also serve as a paraneoplastic antigen in the development of retinal degeneration in some patients with cancer. The aberrant expression of recoverin in cancer cells and the presence of autoantibodies against recoverin are essential for the occurrence of cancer-associated retinopathy, which finally results in the apoptosis of photoreceptor cells. Noteworthy in cancer patients, the aberrant recoverin expression and the appearance of autoantibodies against recoverin are more frequent than paraneoplastic syndromes. We suggest the term “cancer-retina antigens” for this kind of proteins like recoverin that are solely expressed in retina and tumor tissues and evoke antibodies and/or T cells in patients with cancer. The rare development of a paraneoplastic syndrome is possibly caused by this immune response and probably depends on further events allowing to overcome the blood–retina barrier and the immune privileged status of the retina. It is still unknown whether aberrantly expressed recoverin could have a specific function in cancer cells, though it is suggested that it can be functionally associated with G-protein-coupled receptor kinases. This paper reviews the present knowledge on paraneoplastic syndromes associated with the aberrant expression of recoverin. A possible application of recoverin as a potential target for immunotherapy of cancer is discussed.This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2005 (PIVAC 5)”, held in Athens, Greece, on 20–21 September 2005.  相似文献   

4.
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.  相似文献   

5.
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca(2+)-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca(2+). Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca(2+)-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca(2+)](free) (10 microM) than at low [Ca(2+)](free) (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca(2+)](free) in recoverin and at low [Ca(2+)](free) in GCAP2. Such different changes of hydrophobicity evoked by Ca(2+) appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.  相似文献   

6.
Recoverin, a member of the EF-hand protein superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl group covalently attached to the N-terminus of recoverin facilitates its binding to retinal disk membranes by a mechanism known as the Ca(2+)-myristoyl switch. Samples of (15)N-labeled Ca(2+)-bound myristoylated recoverin bind anisotropically to phospholipid membranes as judged by analysis of (15)N and (31)P chemical shifts observed in solid-state NMR spectra. On the basis of a (2)H NMR order parameter analysis performed on recoverin containing a fully deuterated myristoyl group, the N-terminal myristoyl group appears to be located within the lipid bilayer. Two-dimensional solid-state NMR ((1)H-(15)N PISEMA) spectra of uniformly and selectively (15)N-labeled recoverin show that the Ca(2+)-bound protein is positioned on the membrane surface such that its long molecular axis is oriented approximately 45 degrees with respect to the membrane normal. The N-terminal region of recoverin points toward the membrane surface, with close contacts formed by basic residues K5, K11, K22, K37, R43, and K84. This orientation of the membrane-bound protein allows an exposed hydrophobic crevice, near the membrane surface, to serve as a potential binding site for the target protein, rhodopsin kinase. Close agreement between experimental and calculated solid-state NMR spectra of recoverin suggests that membrane-bound recoverin retains the same overall three-dimensional structure that it has in solution. These results demonstrate that membrane binding by recoverin is achieved primarily by insertion of the myristoyl group inside the bilayer with apparently little rearrangement of the protein structure.  相似文献   

7.
Recoverin belongs to the superfamily of EF-hand Ca2+-binding proteins and operates as a Ca2+-sensor in vertebrate photoreceptor cells, where it regulates the activity of rhodopsin kinase GRK1 in a Ca2+-dependent manner. Ca2+-dependent conformational changes in recoverin are allosterically controlled by the covalently attached myristoyl group. The amino acid sequence of recoverin harbors a unique cysteine at position 38. The cysteine can be modified by the fluorescent dye Alexa647 using a maleimide-thiol coupling step. Introduction of Alexa647 into recoverin did not disturb the biological function of recoverin, as it can regulate rhodopsin kinase activity like unlabeled recoverin. Performance of the Ca2+-myristoyl switch of labeled recoverin was monitored by Ca2+-dependent association with immobilized lipids using surface plasmon resonance spectroscopy. When the Ca2+-concentration was varied, labeled myristoylated recoverin showed a 37%-change in fluorescence emission and a 34%-change in excitation intensity, emission and excitation maxima shifted by 6 and 18 nm, respectively. In contrast, labeled nonmyristoylated recoverin exhibited only minimal changes. Time-resolved fluorescence measurements showed biexponentiell fluorescence decay, in which the slower time constant of 2 ns was specifically influenced by Ca2+-induced conformational changes. A similar influence on the slower time constant was observed with the recoverin mutant RecE85Q that has a disabled EF-hand 2, but no such influence was detected with the mutant RecE121Q (EF-hand 3 is nonfunctional) that contains the myristoyl group in a clamped position. We conclude from our results that Alexa647 bound to cysteine 38 can monitor the conformational transition in recoverin that is under control of the myristoyl group.  相似文献   

8.
Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of recoverin from rhodopsin kinase, freeing the kinase to phosphorylate rhodopsin and to terminate the light response. Previous studies have shown that recoverin is able to bind to a region at the N terminus of rhodopsin kinase. In this study we map this interaction interface, showing that residues 1-15 of the kinase form the interaction site for recoverin binding. Mutation of hydrophobic residues in this region have the greatest effect on the interaction. The periodic nature of these residues suggests that they lie along one face of an amphipathic helix. We show that this region is essential for recoverin binding, as a catalytically active kinase lacking these residues is unable to bind recoverin. In addition, we show that neither the N-terminal deletion nor the presence of recoverin inhibits the overall catalytic activity of the kinase, as measured by light-independent autophosphorylation. Finally, we observe that a kinase mutant lacking the N-terminal recoverin binding site is unable to phosphorylate light-activated rhodopsin. Taken together, these data support a model in which recoverin prevents rhodopsin phosphorylation by sterically blocking a region of kinase essential for its interaction with rhodopsin, thereby preventing recognition of rhodopsin as a kinase substrate.  相似文献   

9.
Recoverin is a Ca(2+)-regulated signal transduction modulator expressed in the vertebrate retina that has been implicated in visual adaptation. An intriguing feature of recoverin is a cluster of charged residues at its C terminus, the functional significance of which is largely unclear. To elucidate the impact of this segment on recoverin structure and function, we have investigated a mutant lacking the C-terminal 12 amino acids. Whereas in myristoylated recoverin the truncation causes an overall decrease in Ca(2+) sensitivity, results for the non-myristoylated mutant indicate that the truncation primarily affects the high affinity EF-hand 3. The three-dimensional structure of the mutant has been determined by x-ray crystallography. In addition to significant changes in average coordinates compared with wild-type recoverin, the structure provides strong indication of increased conformational flexibility, particularly in the C-terminal domain. Based on these observations, we propose a novel role of the C-terminal segment of recoverin as an internal modulator of Ca(2+) sensitivity.  相似文献   

10.
Abstract: Recoverin is a calcium-binding protein expressed in retinal photoreceptors. It appears to delay the termination of the phototransduction cascade by blocking the phosphorylation of photoexcited rhodopsin. The goal of this study was to determine if recoverin mRNA and protein are expressed in cultured human Y79 retinoblastoma cells, so that this cell line could be used as a model to study the mechanism of recoverin gene expression in the retina. A cDNA encoding human recoverin was PCR cloned and used for prokaryotic expression of recoverin protein. Polyclonal antibodies raised against pure recombinant recoverin were used for western blotting and immunocytochemistry of Y79 cells grown as attachment cultures in the presence of the differentiating agents dibutyryl cyclic AMP (dbcAMP) or butyrate. Northern blot analysis was performed on mRNA extracted from Y79 cells that were also treated with the differentiating agents. In Y79 cell monolayer cultures, recoverin was immunolocalized to the cell cytoplasm, and immunoreactivity was increased dramatically by the addition of 2 m M butyrate to the culture medium. Butyrate treatment also caused an increase in the development of neurite-like cellular processes. Addition of 4 m M dbcAMP resulted in a moderate increase in both recoverin immunoreactivity and number of cellular processes. Western and northern blots of butyrate and dbcAMP-treated Y79 cell cultures demonstrated an increase in recoverin protein and RNA expression, respectively, comparable with that observed with immunocytochemistry. These data suggest that, under the influence of the differentiating agent butyrate, Y79 cells exhibit an increase in expression of the photoreceptor protein recoverin and a concomitant morphological differentiation toward a neuronal phenotype.  相似文献   

11.
The presence and localization of the calcium-binding protein recoverin, initially found in photoreceptors of the bovine eye, were immunochemically studied in retina of the new Pleurodeles waltl. Polyclonal monospecific antibodies against recoverin were raised and the methods of immunoblotting and indirect immunofluorescence were used. A protein with an apparent molecular mass of 26 kDa was found in the retina extract, which was specifically stained by the antibodies against recoverin. Localization of recoverin was studied on the retina sections: an intense reaction was found in the inner segments and a weak reaction was found in the basal part of the outer segments of photoreceptors and in Landolt's clubs of displaced bipolars. The results we obtained suggest for the first time the presence of recoverin in the retina of a representative of the Urodeles and indicate to interspecific conservativeness of this protein and differences of its localization in the retina photoreceptors in different species. The data obtained open a possibility of using recoverin as a marker protein of photoreceptors and displaced bipolars in studies of retina regeneration in newts.  相似文献   

12.
Recoverin is an EF-hand Ca(2+)-binding protein that is suggested to control the activity of the G-protein-coupled receptor kinase GRK-1 or rhodopsin kinase in a Ca(2+)-dependent manner. It undergoes a Ca(2+)-myristoyl switch when Ca(2+) binds to EF-hand 2 and 3. We investigated the mechanism of this switch by the use of point mutations in EF-hand 2 (E85Q) and 3 (E121Q) that impair their Ca(2+) binding. EF-hand 2 and 3 display different properties and serve different functions. Binding of Ca(2+) to recoverin is a sequential process, wherein EF-hand 3 is occupied first followed by the filling of EF-hand 2. After EF-hand 3 bound Ca(2+), the subsequent filling of EF-hand 2 triggers the exposition of the myristoyl group and in turn binding of recoverin to membranes. In addition, EF-hand 2 controls the mean residence time of recoverin at membranes by decreasing the dissociation rate of recoverin from membranes by 10-fold. We discuss this mechanism as one critical step for inhibition of rhodopsin kinase by recoverin.  相似文献   

13.
Myristoyl switch is a feature of several peripheral membrane proteins involved in signal transduction pathways. This unique molecular property is best illustrated by the "Ca(2+)-myristoyl switch" of recoverin, which is a Ca(2+)-binding protein present in retinal rod cells of vertebrates. In this transduction pathway, the Ca(2+)-myristoyl switch acts as a calcium sensor involved in cell recovery from photoactivation. Ca(2+) binding by recoverin induces the extrusion of its myristoyl group to the solvent, which leads to its translocation from cytosol to rod disk membranes. Force spectroscopy, based on atomic force microscope (AFM) technology, was used to determine the extent of membrane binding of recoverin in the absence and presence of calcium, and to quantify this force of binding. An adhesion force of 48 +/- 5 pN was measured between recoverin and supported phospholipid bilayers in the presence of Ca(2+). However, no binding was observed in the absence of Ca(2+). Experiments with nonmyristoylated recoverin confirmed these observations. Our results are consistent with previously measured extraction forces of lipids from membranes.  相似文献   

14.
No single molecular mechanism accounts for the effect of mutations in rhodopsin associated with retinitis pigmentosa. Here we report on the specific effect of a Ca2+/recoverin upon phosphorylation of the autosomal dominant retinitis pigmentosa R135L rhodopsin mutant. This mutant shows specific features like impaired G-protein signaling but enhanced phosphorylation in the shut-off process. We now report that R135L hyperphosphorylation by rhodopsin kinase is less efficiently inhibited by Ca2+/recoverin than wild-type rhodopsin. This suggests an involvement of Ca2+/recoverin into the molecular pathogenic effect of the mutation in retinitis pigmentosa which is the cause of rod photoreceptor cell degeneration. This new proposed role of Ca2+/recoverin may be one of the specific features of the proposed new Type III class or rhodopsin mutations associated with retinitis pigmentosa.  相似文献   

15.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

16.
NCS (neuronal Ca2+ sensor) proteins belong to a family of calmodulin-related EF-hand Ca2+-binding proteins which, in spite of a high degree of structural similarity, are able to selectively recognize and regulate individual effector enzymes in a Ca2+-dependent manner. NCS proteins vary at their C-termini, which could therefore serve as structural control elements providing specific functions such as target recognition or Ca2+ sensitivity. Recoverin, an NCS protein operating in vision, regulates the activity of rhodopsin kinase, GRK1, in a Ca2+-dependent manner. In the present study, we investigated a series of recoverin forms that were mutated at the C-terminus. Using pull-down assays, surface plasmon resonance spectroscopy and rhodopsin phosphorylation assays, we demonstrated that truncation of recoverin at the C-terminus significantly reduced the affinity of recoverin for rhodopsin kinase. Site-directed mutagenesis of single amino acids in combination with structural analysis and computational modelling of the recoverin-kinase complex provided insight into the protein-protein interface between the kinase and the C-terminus of recoverin. Based on these results we suggest that Phe3 from the N-terminal helix of rhodopsin kinase and Lys192 from the C-terminal segment of recoverin form a cation-π interaction pair which is essential for target recognition by recoverin. Taken together, the results of the present study reveal a novel rhodopsin-kinase-binding site within the C-terminal region of recoverin, and highlights its significance for target recognition and regulation.  相似文献   

17.
The deduced amino acid sequence of the recently cloned mouse 23kD photoreceptor cell-specific protein showed it to be identical to the recoverin protein and the CAR (cancer-associated retinopathy) protein. DNA sequence variants were found in the mouse recoverin gene (Rcvrn), and segregation analysis of restriction fragment length variants in recombinant inbred strains of mice assigned Rcvrn to mouse Chromosome (Chr) 11, between Sparc (3.7 map units) and Zfp-3 (2.3 map units). These results demonstrate a close linkage of recoverin to the tumor suppressor gene, Trp53. On the basis of these data, knowledge of the function of recoverin, and the characteristics of CAR, an experimentally testable model is presented to explain the molecular basis for CAR.  相似文献   

18.
Recoverin is a recently identified Ca(2+)-binding protein that imparts Ca2+ sensitivity to vertebrate photoreceptor guanylate cyclase. In response to photo-induced depletion of intracellular cGMP and Ca2+, recoverin stimulates resynthesis of cGMP. Bovine retinal recoverin has now been analyzed by electrospray mass spectrometry (ESI-MS) for post-translational modifications that might influence its activity. Heterogeneous acylation was detected at the NH2 terminus of bovine retinal recoverin. The NH2-terminal glycine of each retinal recoverin molecule is linked to one of four different types of acyl groups. The most abundant is myristoleate (14:1), but 14:0, 14:2, and 12:0 acyl residues are also present.  相似文献   

19.
Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity.  相似文献   

20.
Recoverin is a calcium-binding protein that regulates the vertebrate photoresponse by inhibiting rhodopsin kinase in response to high calcium concentrations. It is heterogeneously N-acylated by myristoyl and related fatty acyl residues that are thought to act as "calcium-myristoyl switches," whereby, in the presence of Ca2+, the N-terminal acyl group is extended away from recoverin and, in the absence of calcium, it is more closely associated with the protein. Here we use electrospray ionization mass spectrometry (ESI/MS) to examine hydrogen isotopic exchange rates for specific regions of both acylated and nonacylated recoverin in the presence and absence of calcium. The deuterium exchange rates of three regions in the hydrophobic myristoyl binding pocket of acylated recoverin decreased in the absence of calcium. This effect is most likely due to the closer association of the acyl group with the protein under these conditions. In contrast, rates of deuterium incorporation increased in the absence of calcium for other regions, including the two functional calcium-binding sites. In addition to supporting the calcium-myristoyl switch hypothesis, a comparison of the behavior of acylated and unacylated recoverin revealed that the N-acyl group (N-lauroyl or N-myristoyl) exerts a significant stabilizing influence on the dynamics of recoverin. We demonstrate that the new technique of monitoring hydrogen isotopic exchange by ESI/MS can be used to obtain useful information concerning protein structures in solution using smaller amounts of protein and under more physiologically relevant conditions than is typically possible with NMR or X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号