共查询到17条相似文献,搜索用时 93 毫秒
1.
湖南省森林植被碳储量、碳密度动态特征 总被引:1,自引:0,他引:1
利用湖南省4次(1983—1987年、1990—1995年、2003—2004年和2009年)森林资源清查数据,采用材积源-生物量法,结合湖南省现有森林植被主要树种碳含量实测数据,研究近20多年来湖南省森林植被碳储量、碳密度的动态特征。结果表明:从1987年到2009年,湖南省乔木林植被碳汇为66.40×106tC,碳密度提高了5.65 tC/hm~2,阔叶林碳汇最大(48.43×10~6tC),其次是杉木林(9.54×10~6tC)和松木林(6.68×10~6tC),各乔木林植被碳密度波动较大;除过熟林外,各龄组乔木林均为碳汇,中龄林碳汇最大,幼龄林、中龄林、近熟林植被碳密度依次提高了4.75、4.09、0.83 tC/hm~2,成熟林、过熟林分别下降了6.87、13.88 tC/hm~2;天然林、人工林植被碳汇分别为41.01×10~6tC、25.39×10~6tC,碳密度分别提高了7.19、4.91 tC/hm~2。湖南省森林植被(包括疏林)碳汇为84.87×10~6tC,乔木林碳汇最大,其次是竹林,分别占湖南省森林植被碳汇的78.24%和33.31%,碳密度提高了6.24 tC/hm~2,各森林类型植被碳储量随其面积变化而变化。表明近20多年来,湖南省乔木林植被单位面积储碳能力明显提高,天然林在湖南省乔木林植被碳储量占有重要地位。 相似文献
2.
深圳市森林植被碳储量特征及其空间分布 总被引:1,自引:0,他引:1
基于2005年深圳市森林资源二类调查资料数据,采用材积源生物量法,计测深圳市森林植被碳储量和碳密度,分析了深圳市森林植被碳储量空间分布格局.结果表明,2005年深圳市森林植被总碳储量为225.04×104Mg,平均碳密度为25.63MgC·hm-2.深圳市各区的森林植被碳储量空间分布上有显著差异.表现为龙岗区(123.13×104Mg)>宝安区(46.70×104Mg)>盐田区(20.49×104Mg)>罗湖区(14.75×104Mg)>南山区(12.79×104Mg)>福田区(5.63×104Mg)>保护区(1.57×104Mg).各区碳密度分布为盐田区(46.18MgC·hm-2)>福田区(37.63 MgC·hm-2)>罗湖区(36.78MgC·hm-2)>龙岗区(26.60MgC·hm-2)>保护区>(24.19 MgC·hm-2)>宝安区(19.53MgC·hm-2),与碳储量大小分布无明显相关.深圳市乔木林碳储量为146.11×104Mg,以中幼龄林为主,占73.2%,平均碳密度为30.76MgC·hm-2.根据森林植被碳储量与碳密度的空间差异性对深圳市森林进行了区划,并分区提出了提高深圳市森林碳吸存能力的有效措施. 相似文献
3.
辽宁省森林植被碳储量和固碳速率变化 总被引:2,自引:0,他引:2
利用CBM-CFS3模型,结合森林资源相关数据,研究辽宁省森林植被碳储量和固碳速率;并基于是否造林的两种假设情境,预测了未来辽宁省森林植被碳储量、碳密度和固碳速率的时空变化趋势.结果表明: 2005年辽宁省森林植被碳储量为133.94 Tg,碳密度为25.08 t·hm-2,其中,栎类的碳储量最大,刺槐碳储量最小;落叶松和阔叶林碳密度较大,油松、栎类和刺槐碳密度基本相当.全省森林植被碳密度呈东高西低的分布规律,辽东地区由于森林多为成熟林和过熟林,未来植被碳密度增加潜力不大,辽宁南部和北部的中幼龄林未来将成为植被碳密度增长的高值区.在假设未来不造林的情景下,辽宁省森林植被碳储量上升缓慢,固碳速率下降较快;在无林地造林情景下,全省森林植被碳储量、固碳速率将明显提高.说明造林在增加森林植被碳储量和碳密度、提高森林的固碳速率中起到了重要作用. 相似文献
4.
黑龙江省森林植被碳储量及其动态变化 总被引:27,自引:3,他引:27
黑龙江省的森林资源在全国森林资源中占有较为重要的位置.利用我国第一次(1973~1976年)至第六次(1999~2003年)森林资源清查资料,以及不同树种生物量和蓄积量之间的线性关系,对黑龙江省近30年来森林碳储量进行了求和推算.结果表明,黑龙江省6次森林资源清查中森林的总碳储量分别是7.916×108 t、.413×108 t、.661×108 t、.880×108 t、6.216×108 t和6.011×108 t,总体呈先下降后上升的趋势,说明30年间黑龙江省的森林是CO2的"汇";特别是1977~1981年后,黑龙江省森林碳储量呈逐渐上升趋势,说明近20年来黑龙江省森林CO2"汇"的作用在增强.如果对现有森林进行更好地抚育和管理,黑龙江省森林作为CO2"汇"的潜力很大. 相似文献
5.
四川省森林植被固碳经济价值动态 总被引:2,自引:1,他引:2
<正>确估算森林植被固碳经济价值可为森林生态系统的生态效益评价提供基础数据。利用1997年和2014年两期四川省森林资源清查数据,依据不同森林类型的生物量与蓄积量回归方程和支付意愿法,估算了四川省两个时期森林植被的固碳经济价值。结果表明,从1997年到2014年,四川省森林植被固碳经济价值由703.17亿元增长到865.75亿元,净增长162.58亿元,年均增长9.56亿元,年均增长率为1.36%;在两个时期,云冷杉林的固碳经济价值比重最大,分别占总固碳经济价值的54.82%和46.62%,表明云冷杉森林植被类型在全省森林植被固碳经济价值中占有重要的地位;四川省天然林和人工林植被的固碳经济价值均呈增加趋势,并且人工林植被固碳经济价值年均增长速率(7.42%)明显高于天然林(1.03%);四川省森林植被固碳经济价值总体上随林龄的增加而增加。研究结果说明,实施包括天然林保护工程在内的森林保护和经营管理措施对提高森林植被的固碳经济价值具有重要的作用。 相似文献
6.
西藏昌都地区森林植被碳储量及空间分布格局 总被引:2,自引:0,他引:2
基于昌都地区第6次二类森林资源清查数据资料,运用生物量转换因子法进行生物量估算,以藏东南实测含碳率与国内含碳率的相关研究相结合,确定不同树种的含碳率,在此基础上,估算了昌都地区的森林碳储量和碳密度,并探讨其空间分布格局。结果表明:昌都地区的森林总碳储量约为1.058×10~8t,平均碳密度为67.31 t·hm~(-2),均低于林芝地区;各森林类型碳储量在4.5×10~2~8.21×10~7t,以云杉林的碳储量占绝对优势,为昌都地区的77.82%,碳密度则在19.88~81.16 t·hm~(-2);从龄组来看,以成、过熟林碳储量为主,占总森林碳储量的77.91%,各龄组碳密度随年龄增加呈近直线增加趋势;从森林碳储量和碳密度的分布格局来看,森林碳储量呈以左贡县最高,丁青县最低,"三江"南部区为高森林碳储量区,"三江"中游区为低森林碳储量区,"三江"上游区为中等森林碳储量区的总体分布格局;总体上,森林碳密度则呈以东北部江达县为最高,东南部的芒康县为最低,"三江"上游区平均碳密度最高,"三江"南部区次之,"三江"中游区最低,但空间分布差异相对较小(60.55~74.41 t·hm~(-2))。 相似文献
7.
秦岭宁陕县森林植被碳储量与碳密度特征 总被引:1,自引:0,他引:1
以秦岭南坡中段宁陕县林区2003年二类森林调查资料为基础,采用政府间气候变化委员会(IPCC)推荐使用的森林碳储量估算方法,从森林类型、林种、年龄和林分起源的角度,对该林区森林植被碳储量和碳密度进行估算。结果显示:(1)宁陕县森林植被碳储量为12.31Tg(1Tg=1×1012 g),平均碳密度为66.36Mg/hm2(1Mg=1×106 g),其各乡镇森林植被碳储量和碳密度在空间上的分布不平衡。(2)各森林类型中针叶林总碳储量为0.71Tg,平均碳密度为64.11 Mg/hm2,阔叶林总碳储量为11.61Tg,占宁陕县总碳储量的94.3%,碳密度为67.65Mg/hm2。(3)各林种中防护林碳储量最大(8.13Tg),占宁陕县总碳储量的66%,特种用途林碳密度最大(81.43Mg/hm2)。(4)不同林分起源中,天然林碳储量为12.231Tg,占宁陕县总碳储量的99.3%,人工林碳储量较小。(5)不同年龄森林中未成熟森林(包括幼龄林、中龄林和近熟林)碳储量为12.13Tg,占总碳储量的98.5%,近熟林碳密度最大(80.14Mg/hm2),幼龄林碳密度最小(39.85Mg/hm2)。研究表明,宁陕县森林具有较大的固碳能力和固碳潜力,其森林面积和蓄积是决定森林碳储量大小的重要因子,而森林碳密度的大小与森林类型、年龄组成和林分起源方式密切相关。 相似文献
8.
利用1994—1998年、1999—2003年、2004—2008年、2009—2013年河南省4期森林资源清查数据,运用生物量转换因子连续函数法和平均生物量法,估算了1998—2013年河南省森林植被的碳储量和碳密度变化。研究结果表明,河南省森林植被碳储量由1998年的45.57 Tg增加到2013年的107.98 Tg,年均碳汇量为4.16 Tg/a。乔木林碳储量和碳密度分别由1998年的33.54 Tg和22.39 Mg/hm~2增加到2013年的97.11 Tg和31.80 Mg/hm~2。乔木林碳储量在所有植被类型中占主体,4个森林清查时期乔木林碳储量占森林植被总碳储量的比例分别为73.60%、79.22%、85.63%和89.93%。2013年森林清查时,乔木林中杨树和栎类碳储量最大,分别占总碳储量的37.61%和25.22%,各龄组乔木林碳密度大小顺序依次为成熟林近熟林中龄林过熟林幼龄林。阔叶林面积、碳储量、碳密度均高于针叶林,阔叶林是河南省森林碳汇的主要贡献者。人工林面积、碳储量、碳密度增加幅度都要高于天然林,人工林碳储量由1998年的9.62 Tg增加到2013年的55.67 Tg,占乔木林碳储量总增量的77.15%,人工林碳密度由1998年的17.86 Mg/hm~2提高到2013年的32.01 Mg/hm~2,人工林在河南省森林碳汇中逐步发挥重要的作用,逐渐成为河南省森林碳汇的主体,随着人工林生长为具有较高碳密度的成熟林,河南省乔木林将具有较大的碳汇潜力。 相似文献
9.
为阐明安徽省不同林龄的森林生态系统的碳储量现状, 以及现有自然环境条件下顶极森林生态系统的固碳潜力, 采用野外样地调查和BIOME4模型方法对此进行研究。安徽省森林生态系统的现状总碳储量为714.5 Tg C, 其中植被碳402.1 Tg C、土壤碳312.4 Tg C。从幼龄林至过熟林的生长过程中, 森林生态系统的总碳密度和植被碳密度都呈现增长趋势。但土壤碳密度从幼龄林至近熟林阶段呈增加趋势, 近熟林以后出现减少趋势。安徽省幼龄林和中龄林占森林总面积的75%, 若幼、中龄林发展到近熟林阶段, 将增加125.4 Tg C。BIOME4模拟显示: 当森林发展到气候顶极森林时, 安徽省森林生态系统将增加245.7 Tg C, 即总固碳潜力包括植被固碳153.7 Tg C, 土壤固碳92.0 Tg C。 相似文献
10.
青海省高寒草地土壤无机碳储量空间分异特征 总被引:4,自引:0,他引:4
以青海省主要高寒草地类型即温性草原、高寒草原、草甸草原以及高寒草甸为研究对象,进行其土壤无机碳(SIC)储量分异特征研究。结果表明,在取样剖面内四类草地SIC储量依次为温性草原高寒草原草甸草原高寒草甸,其值分别为16.51、16.48、3.37 kg C/m2和0.12 kg C/m2,温性草原与高寒草原土壤是高寒草地无机碳的主要储蓄库。温性草原与高寒草原50—100cm SIC储量分别占0—100cm总储量的60.2%和51.8%,而草甸草原与高寒草甸30—50cm SIC储量分别占0—50cm总储量的50.1%和55.8%,说明土体下部是高寒草地无机碳储蓄的主要场所。四类草地SIC含量随土层深度的变化过程各异,其碳酸钙富集层与野外剖面调查所得碳酸钙盐酸泡沫检验结果相吻合。SIC储量与土壤容重和土壤p H均呈显著正相关关系,与地下生物量呈显著负相关关系。 相似文献
11.
四川森林土壤有机碳储量的空间分布特征 总被引:29,自引:0,他引:29
利用森林土壤实测数据与GIS相结合的研究方法估算了四川森林土壤有机碳密度和碳储量,研究了四川森林土壤有机碳密度的空间分布特征.四川森林土壤有机碳储量为(2394.26 ±514.15) TgC,平均碳密度为190.45 Mg·hm-2;四川不同森林类型土壤有机碳储量和碳密度差异较大,分别介于(5.05±0.37)~(1101.74±205.40) TgC、(102.69±21.09)~(264.41±49.24) Mg·hm-2之间,其有机碳含量、碳密度和碳储量都随土层厚度的增加而降低.四川森林土壤有机碳密度空间分布特征明显,总体上表现出随纬度、海拔高度的增加而增加,随经度的增加而减小.从森林土壤生态系统水平监测森林土壤有机碳储量有助于提高其估算精度. 相似文献
12.
四川森林植被碳储量的时空变化 总被引:12,自引:0,他引:12
利用平均木法建立森林生物量与蓄积量模型,结合四川森林资源二类调查数据,研究了森林碳密度和碳储量的时空变化.结果表明 四川森林碳储量从1974年的300.02 Tg增加到2004年的469.96 Tg,年均增长率1.51%,表明其是CO2的"汇".由于人工林面积的增加,森林植被的平均碳密度从49.91 Mg·hm-2减少到37.39 Mg·hm-2.四川森林碳储量存在空间差异性,表现为川西北高山峡谷区>川西南山区>盆周低山区>盆地丘陵区>川西平原区.森林碳密度由东南向西北呈现逐渐增加趋势,即盆地丘陵区<川西平原区<川西南山区<盆周低山区<川西北高山峡谷区.通过分区森林经营与管理将提高四川森林的碳吸存能力. 相似文献
13.
四川省及重庆地区森林植被碳储量动态 总被引:16,自引:0,他引:16
四川省及重庆市地区森林植被是我国第二大林区-西南林区的主体,位于"世界第三极"--青藏高原东缘.在建立森林乔木层生物量与蓄积量回归模型的基础上,按林分类型测定含碳量,结合四川4次森林资源清查数据,估算了不同时段的碳储量.各林分类型含碳量在46.75%~54.89%之间,平均含碳量为51.09%,针叶林平均含碳量(52.82%)大于阔叶林(49.37%);四川森林植被碳储量从1988年的383.04TgC增加到2003年的523.57TgC,增加了140.53TgC,年均增长率2.11%,比全国年均增长率高出0.22%,表明四川森林植被是CO2的一个汇.4次调查的森林植被平均碳密度分别为38.93、38.68、39.17、41.66MgC/hm2,呈现增加趋势,表明森林植被的碳汇功能不断加强;成熟林碳储量占同期的64.15%、63.89%、65.33%、60.82%,但所占比重呈下降的趋势,幼中林碳储量的比重不断上升,表明森林植被的碳吸存潜力大;森林植被碳储量主要分布在天然林中,占同期碳储量的90%以上,但人工林的碳储能力正在逐步提高,人工林碳年均增长率(7.17%)明显大于天然林(1.83%),表明人工林将在研究区域森林植被碳汇功能中扮演重要的角色.研究区森林植被碳储量占同期全国碳储量的比例呈增加趋势,可见,研究区森林植被在全国森林碳汇中具有重要的作用和地位. 相似文献
14.
基于地统计学和CFI样地的浙江省森林碳空间分布研究 总被引:4,自引:0,他引:4
基于浙江省2009年CFI固定样地数据、森林资源规划设计调查林相图,利用地统计学方法对浙江省森林碳空间分布进行了模拟分析。结果表明,CFI固定样地数据用于省域范围的森林碳汇空间特征研究是合适的。数据显示,浙江森林植被平均碳密度为22.07Mg/hm2;与四川、福建、海南等地相比,平均碳密度较低。受人类活动、自然环境等因素影响,浙江省森林碳分布主要表现为:总体上森林碳密度空间变化趋势自西向东逐渐降低,与自然空间(海拔、地势等)趋势一致。基于地统计学和CFI固定样地,对省域范围的森林资源空间分布的研究,可以为省域森林碳汇管理提供依据,为我国特别是亚热带南方集体林区利用国家CFI数据进行大区域同类研究提供借鉴。 相似文献
15.
六盘山森林植被碳密度空间分布特征及其成因 总被引:2,自引:0,他引:2
深入了解干旱缺水地区森林植被碳密度的空间分布特征是定量评价森林固碳能力、合理协调林水矛盾的重要基础。然而,目前有关干旱缺水地区的植被碳密度的研究仅限于典型样地上的碳储量、碳密度的比较,对区域尺度上森林植被碳密度的空间分布特征了解较少。为此,利用宁夏六盘山自然保护区2005年森林资源一类清查数据,计算了森林植被碳密度,并分析了其与林分结构特征和环境因子的关系。结果表明,六盘山的森林植被碳密度(t/hm2)平均为26.17(0.67—120.63),其中天然次生林为30.2(7.6—120.6),显著高于人工林的15.7(0.67—66.7)。森林植被碳密度随林龄增加而线性增大,天然林和人工林的平均增速分别为1.11和2.48 t hm-2a-1,而且,部分未成熟林的林分植被碳密度已接近甚至超过全国同类森林类型成熟林的植被碳密度平均值。随林分密度增加,森林植被碳密度增大,但在林分密度1000株/hm2后,森林植被碳密度不再增大,达到其最大值,其中,天然林为75.4 t/hm2,人工林为34.6 t/hm2;林冠郁闭度对森林植被碳密度的影响与林分密度相似,森林植被碳密度增长的郁闭度拐点为0.5。水分条件是影响六盘山森林植被碳密度的重要因素,森林植被碳密度(t/hm2)由700 mm以上地点的32.5(7.6—120.6)下降至年降水量500—600 mm地点的10.9(0.67—42.9),而且随年降水量减少,最大森林植被碳密度所对应的海拔高度呈增加趋势,如在年降水量为700、600—700和600 mm的地区,最大碳密度所在海拔高度分别为1900—2100、2100—2300和2300—2500 m。综上所述,研究区森林植被还有较大的固碳潜力,从提高森林固碳功能角度来看,林分郁闭度不宜超过0.5。 相似文献
16.
林火作为森林非连续的生态因子,引起森林生态系统碳库碳储量与碳分配的变化,影响森林演替进程及固碳能力。以桉树林不同林火干扰强度的火烧迹地为对象,采用相邻样地比较法,以野外调查采样与室内试验分析相结合为主要手段,研究不同林火干扰强度对森林生态系统各碳库及生态系统碳密度变化和空间分布格局的影响,探讨林火干扰对生态系统碳密度与碳分布格局的影响机制。结果表明:林火干扰降低了植被碳密度(P<0.05),轻度、中度和重度林火干扰样地植被碳密度依次为67.88、35.68和15.50 t·hm-2,相比对照分别下降了15.86%、55.78%和80.79%;在轻度、中度和重度林火干扰样地中,凋落物碳密度分别为1.43、0.94和0.81 t·hm-2,相比对照分别降低了28.14%、52.76%和59.30%;不同林火干扰强度样地土壤有机碳密度均低于对照,且减少幅度随土壤剖面深度增加而逐渐变小,轻度、中度和重度林火干扰样地土壤有机碳密度分别为103.30、84.33和70.04 t·hm-2,相比对照分别下降了11.67%、27.... 相似文献
17.
喀斯特森林植被自然恢复过程中土壤可矿化碳库特征 总被引:9,自引:0,他引:9
2011年9月,采用空间代替时间方法,研究了茂兰自然保护区喀斯特森林自然恢复过程中土壤可矿化碳库的特征.结果表明: 研究期间,喀斯特森林自然恢复过程中不同深度土壤的总有机碳含量、可矿化碳含量和矿化速率随土层加深而减少,随恢复的进程而增加;累积矿化排放量及其速率随恢复的进程增加,其速率随培养时间延长而减小;矿化率随恢复的进程增加,而随土层加深的变化不明显;qCO2值随恢复的进程和土层加深而递减;土壤可矿化碳与凋落物现存量及其分解质量损失率分别呈负相关(r=-0.796)和正相关(r=0.924);土壤生境由早期干扰强烈转向中后期日趋稳定,土壤的固碳能力由早期差、潜力大转向中后期强、潜力小. 相似文献