首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The eukaryotic translation initiation factor (eIF) 4B promotes the RNA-dependent ATP hydrolysis activity and ATP-dependent RNA helicase activity of eIF4A and eIF4F during translation initiation. eIF4B also helps to organize the assembly of the translational machinery through its interactions with eIF4A, eIF4G, eIF3, the poly(A)-binding protein (PABP), and RNA. Although the function of eIF4B is conserved among plants, animals, and yeast, eIF4B is one of the least conserved of initiation factors at the sequence level. Mammalian eIF4B is a constitutive dimer; however, conflicting reports have suggested that plant eIF4B may exist as a monomer or a dimer. In this study, we show that eIF4B from wheat can form a dimer and we identify the region responsible for its dimerization. Zinc stimulated homodimerization of eIF4B and bound eIF4B with a Kd of 19.7 nM. Zinc increased the activity of the eIF4B C-terminal RNA-binding domain specifically. Zinc promoted the interaction between eIF4B and PABP but not the interaction between eIF4B and eIF4A or eIFiso4G, demonstrating that the effect of zinc was highly specific. The interaction between PABP and eIFiso4G was also stimulated by zinc but required significantly higher levels of zinc. Interestingly zinc abolished the ability of eIFiso4G to compete with eIF4B in binding to their overlapping binding sites in PABP by preferentially promoting the interaction between eIF4B and PABP. Our observations suggest that wheat eIF4B can dimerize but requires zinc. Moreover zinc controls the partner protein selection of PABP such that the interaction with eIF4B is preferred over eIFiso4G.  相似文献   

2.
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.  相似文献   

3.
The poly(A)-binding protein (PABP) interacts with the eukaryotic initiation factor (eIF) 4G (or eIFiso4G), the large subunit of eIF4F (or eIFiso4F) to promote translation initiation. In plants, PABP also interacts with eIF4B, a factor that assists eIF4F function. PABP is a phosphoprotein, although the function of its phosphorylation has not been previously investigated. In this study, we have purified the phosphorylated and hypophosphorylated isoforms of PABP from wheat to examine whether its phosphorylation state affects its binding to poly(A) RNA and its interaction with eIF4G, eIFiso4G, or eIF4B. Phosphorylated PABP exhibited cooperative binding to poly(A) RNA even under non-stoichiometric binding conditions, whereas multiple molecules of hypophosphorylated PABP bound to poly(A) RNA only after free poly(A) RNA was no longer available. Together, phosphorylated and hypophosphorylated PABP exhibited synergistic binding. eIF4B interacted with PABP in a phosphorylation state-specific manner; native eIF4B increased the RNA binding activity specifically of phosphorylated PABP and was greater than 14-fold more effective than was recombinant eIF4B, whereas eIF4F promoted the cooperative binding of hypophosphorylated PABP. These data suggest that the phosphorylation state of PABP specifies the type of binding to poly(A) RNA and its interaction with its partner proteins.  相似文献   

4.
Khan MA  Goss DJ 《Biochemistry》2012,51(7):1388-1395
VPg of turnip mosaic virus (TuMV) was previously shown to interact with translation initiation factor eIFiso4F and play an important role in mRNA translation [Khan, M. A., et al. (2008) J. Biol. Chem.283, 1340-1349]. VPg competed with cap analogue for eIFiso4F binding and competitively inhibited cap-dependent translation and enhanced cap-independent translation to give viral RNA a significant competitive advantage. To gain further insight into the cap-independent process of initiation of protein synthesis, we examined the effect of PABP and/or eIF4B on the equilibrium and kinetics of binding of VPg to eIFiso4F. Equilibrium data showed the addition of PABP and/or eIF4B to eIFiso4F increased the binding affinity for VPg (K(d) = 24.3 ± 1.6 nM) as compared to that with eIFiso4F alone (K(d) = 81.3 ± 0.2.4 nM). Thermodynamic parameters showed that binding of VPg to eIFiso4F was enthalpy-driven and entropy-favorable with the addition of PABP and/or eIF4B. PABP and eIF4B decreased the entropic contribution by 67% for binding of VPg to eIFiso4F. The decrease in entropy involved in the formation of the eIFiso4F·4B·PABP-VPg complex suggested weakened hydrophobic interactions for complex formation and an overall conformational change. The kinetic studies of eIFiso4F with VPg in the presence of PABP and eIF4B show 3-fold faster association (k(2) = 182 ± 9.0 s(-1)) compared to that with eIFiso4F alone (k(2) = 69.0 ± 1.5 s(-1)) . The dissociation rate was 3-fold slower (k(-2) = 6.5 ± 0.43 s(-1)) for eIFiso4F with VPg in the presence of PABP and eIF4B (k(-2) = 19.0 ± 0.9 s(-1)). The addition of PABP and eIF4B decreased the activation energy of eIFiso4F with VPg from 81.0 ± 3.0 to 44.0 ± 2.4 kJ/mol. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves to sequester initiation factors.  相似文献   

5.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   

6.
7.
Khan MA  Goss DJ 《Biochemistry》2005,44(11):4510-4516
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic translational initiation factor eIFiso4F and its subunit, eIFiso4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step occurring at a rate close to the diffusion-controlled rate [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The kinetic effects of eIF4B, PABP, and wheat germ eIFiso4F with two mRNA cap analogues and the temperature dependence of this reaction were measured and compared. The Arrhenius activation energies for binding of the two mRNA cap analogues, Ant-m(7)GTP and m(7)GpppG, were significantly different. Fluorescence stopped-flow studies of the eIFiso4F.eIF4B protein complex with two m(7)G cap analogues show a concentration-independent conformational change. The rate of this conformational change was approximately 2.4-fold faster for the eIFiso4F.eIF4B complex compared with our previous studies of eIFiso4F [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The dissociation rates were 3.7- and 5.4-fold slower for eIFiso4F.Ant-m(7)GTP and eIFiso4F.m(7)GpppG, respectively, in the presence of eIF4B and PABP. These studies show that eIF4B and PABP enhance the interaction with the cap and probably are involved in protein-protein interactions as well. The temperature dependence of the cap binding reaction was markedly reduced in the presence of either eIF4B or PABP. However, when both eIF4B and PABP were present, not only was the energy barrier reduced but the binding rate was faster. Since cap binding is thought to be the rate-limiting step in protein synthesis, these two proteins may perform a critical function in regulation of the overall protein synthesis efficiency. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves as a scaffold for further initiation complex formation.  相似文献   

8.
The eukaryotic translation initiation factor 4G (eIF4G) plays a pivotal role in translation. EIF4G interacts with several other factors including eIF4E, which is a cap-binding protein, and the poly(A)-binding protein (PABP). In this work, we demonstrate that the expression of the amino-terminal one-third of eIF4G, which interacts with eIF4E and PABP, in Xenopus oocyte inhibits translation and progesterone-induced maturation.  相似文献   

9.
The 3' cap-independent translation element (BTE) of Barley yellow dwarf virus RNA confers efficient translation initiation at the 5' end via long-distance base pairing with the 5'-untranslated region (UTR). Here we provide evidence that the BTE functions by recruiting translation initiation factor eIF4F. We show that the BTE interacts specifically with the cap-binding initiation factor complexes eIF4F and eIFiso4F in a wheat germ extract (wge). In wge depleted of cap-interacting factors, addition of eIF4F (and to a lesser extent, eIFiso4F) allowed efficient translation of an uncapped reporter construct (BLucB) containing the BTE in its 3' UTR. Translation of BLucB required much lower levels of eIF4F or eIFiso4F than did a capped, nonviral mRNA. Both full-length eIF4G and the carboxy-terminal half of eIF4G lacking the eIF4E binding site stimulated translation to 70% of the level obtained with eIF4F, indicating a minor role for the cap-binding protein, eIF4E. In wge inhibited by either BTE in trans or cap analog, eIF4G alone restored translation nearly as much as eIF4F, while addition of eIF4E alone had no effect. The BTE bound eIF4G (Kd = 177 nm) and eIF4F (Kd = 37 nm) with high affinity, but very weakly to eIF4E. These interactions correlate with the ability of the factors to facilitate BTE-mediated translation. These results and previous observations are consistent with a model in which eIF4F is delivered to the 5' UTR by the BTE, and they show that eIF4G, but not eIF4E, plays a major role in this novel mechanism of cap-independent translation.  相似文献   

10.
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic initiation factor iso4F (eIFiso4F) and its subunit, eIF4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step being too fast to measure by stopped-flow techniques (). Further equilibrium studies showed that poly(A)-binding protein (PABP) enhanced the cap binding of eIFiso4F about 40-fold. The kinetic effects of PABP on cap binding and the temperature dependence of this reaction were measured and compared. Fluorescence stopped-flow studies of the PABP.eIFiso4F protein complex with cap show a concentration-independent conformational change. PABP did not significantly increase the rate of the conformational change, and because the initial second-order binding is essentially diffusion-controlled, the enhancement of cap affinity must reside in the dissociation rate. The dissociation rate was more than 5-fold slower in the presence of PABP. The temperature dependence of the cap binding reaction was markedly reduced in the presence of PABP. The reduced energy barrier for formation of a cap.eIFiso4F complex suggests a more stable platform for further initiation complex formation and a possible means of adapting to varying temperature conditions.  相似文献   

11.
12.
13.
Eukaryotic initiation factor eIF4E plays a pivotal role in translation initiation. As a component of the ternary eIF4F complex, eIF4E interacts with the mRNA cap structure to facilitate recruitment of the 40S ribosomal subunit onto mRNA. Plants contain two distinct cap-binding proteins, eIF4E and eIFiso4E, that assemble into different eIF4F complexes. To study the functional roles of eIF4E and eIFiso4E in tobacco, we isolated two corresponding cDNAs, NteIF4E1 and NteIFiso4E1, and used these to deplete cap-binding protein levels in planta by antisense downregulation. Antibodies raised against recombinant NteIF4E1 detected three distinct cap-binding proteins in tobacco leaf extracts; NteIF4E and two isoforms of NteIFiso4E. The three cap-binding proteins were immuno-detected in all tissues analysed and were coordinately regulated, with peak expression in anthers and pollen. Transgenic tobacco plants showing significant depletion of either NteIF4E or the two NteIFiso4E isoforms displayed normal vegetative development and were fully fertile. Interestingly, NteIFiso4E depletion resulted in a compensatory increase in NteIF4E levels, whereas the down-regulation of NteIF4E did not trigger a reciprocal increase in NteIFiso4E levels. The antisense depletion of both NteIF4E and NteIFiso4E resulted in plants with a semi-dwarf phenotype and an overall reduction in polyribosome loading, demonstrating that both eIF4E and eIFiso4E support translation initiation in planta, which suggests their potential role in the regulation of plant growth.  相似文献   

14.
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the capbinding protein eIF4E and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this "closed loop" mRNP among other effects enhance the affinity of eIF4E for the 5' cap by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picomavirus' internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to initiation complex formation. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP.  相似文献   

15.
The interaction between the poly(A)‐binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA‐binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB‐1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB‐1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP‐dependent after the addition of YB‐1. In this system, eIF4E binding to the cap structure is inhibited by YB‐1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB‐1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB‐1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.  相似文献   

16.
The 5'-leader of tobacco etch virus (TEV) genomic RNA directs the efficient translation from the naturally uncapped viral RNA. The TEV 143-nt 5'-leader folds into a structure that contains two domains, each of which contains RNA pseudoknots. The 5'-proximal pseudoknot 1 (PK1) is necessary to promote cap-independent translation (Zeenko, V., and Gallie, D. R. (2005) J. Biol. Chem. 280, 26813-26824). During the translation initiation of cellular mRNAs, eIF4G functions as an adapter that recruits many of the factors involved in stimulating 40 S ribosomal subunit binding to an mRNA. Two related but highly distinct eIF4G proteins are expressed in plants, animals, and yeast. The two plant eIF4G isoforms, referred to as eIF4G and eIFiso4G, differ in size (165 and 86 kDa, respectively) and their functional differences are still unclear. Although eIF4G is required for the translation of TEV mRNA, it is not known if eIF4G binds directly to the TEV RNA itself or if other factors are required. To determine whether binding affinity and isoform preference correlates with translational efficiency, fluorescence spectroscopy was used to measure the binding of eIF4G, eIFiso4G, and their complexes (eIF4F and eIFiso4F, respectively) to the TEV 143-nt 5'-leader (TEV1-143) and a shorter RNA that contained PK1. A mutant (i.e. S1-3) in which the stem of PK1 was disrupted resulting in impaired cap-independent translation, was also tested. These studies demonstrate that eIF4G binds TEV1-143 and PK1 RNA with approximately 22-30-fold stronger affinity than eIFiso4G. eIF4G and eIF4F bind TEV1-143 with similar affinity, whereas eIFiso4F binds with approximately 6-fold higher affinity than eIFiso4G. The binding affinity of eIF4G, eIF4F, and eIFiso4G to S1-3 was reduced by 3-5-fold, consistent with the reduction in the ability of this mutant to promote cap-independent translation. Temperature-dependent binding studies revealed that binding of the TEV 5'-leader to these initiation factors has a large entropic contribution. Overall, these results demonstrate the first direct interaction of eIF4G with the TEV 5'-leader in the absence of other initiation factors. These data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.  相似文献   

17.
Eukaryotic initiation factor (eIF) 4G plays an important role in assembling the initiation complex required for ribosome binding to an mRNA. Plants, animals, and yeast each express two eIF4G homologs, which share only 30, 46, and 53% identity, respectively. We have examined the functional differences between plant eIF4G proteins, referred to as eIF4G and eIFiso4G, when present as subunits of eIF4F and eIFiso4F, respectively. The degree to which a 5'-cap stimulated translation was inversely correlated with the concentration of eIF4F or eIFiso4F and required the poly(A)-binding protein for optimal function. Although eIF4F and eIFiso4F directed translation of unstructured mRNAs, eIF4F supported translation of an mRNA containing 5'-proximal secondary structure substantially better than did eIFiso4F. Moreover, eIF4F stimulated translation from uncapped monocistronic or dicistronic mRNAs to a greater extent than did eIFiso4F. These data suggest that at least some functions of plant eIFiso4F and eIF4F have diverged in that eIFiso4F promotes translation preferentially from unstructured mRNAs, whereas eIF4F can promote translation also from mRNAs that contain a structured 5'-leader and that are uncapped or contain multiple cistrons. This ability may also enable eIF4F to promote translation from standard mRNAs under cellular conditions in which cap-dependent translation is inhibited.  相似文献   

18.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original.  相似文献   

19.
Potyvirus genome linked protein, VPg, interacts with translation initiation factors eIF4E and eIFiso4E, but its role in protein synthesis has not been elucidated. We show that addition of VPg to wheat germ extract leads to enhancement of uncapped viral mRNA translation and inhibition of capped viral mRNA translation. This provides a significant competitive advantage to the uncapped viral mRNA. To understand the molecular basis of these effects, we have characterized the interaction of VPg with eIF4F, eIFiso4F, and a structured RNA derived from tobacco etch virus (TEV RNA). When VPg formed a complex with eIF4F, the affinity for TEV RNA increased more than 4-fold compared with eIF4F alone (19.4 and 79.0 nm, respectively). The binding affinity of eIF4F to TEV RNA correlates with translation efficiency. VPg enhanced eIFiso4F binding to TEV RNA 1.6-fold (178 nm compared with 108 nm). Kinetic studies of eIF4F and eIFiso4F with VPg show approximately 2.6-fold faster association for eIFiso4F.VPg as compared with eIF4F.VPg. The dissociation rate was approximately 2.9-fold slower for eIFiso4F than eIF4F with VPg. These data demonstrate that eIFiso4F can kinetically compete with eIF4F for VPg binding. The quantitative data presented here suggest a model where eIF4F.VPg interaction enhances cap-independent translation by increasing the affinity of eIF4F for TEV RNA. This is the first evidence of direct participation of VPg in translation initiation.  相似文献   

20.
《Gene》1998,216(1):1-11
A quarter of century following the prediction that mRNAs are translated in a circular form, recent biochemical and genetic evidence has accumulated to support the idea that communication between the termini of an mRNA is necessary to promote translation initiation. The poly(A)-binding protein (PABP) interacts with the cap-associated eukaryotic initiation factor (eIF) 4G (in yeast and plants) and eIF4B (in plants), a functional consequence of which is to increase the affinity of PABP for poly(A) and to increase the affinity of the cap-binding complex, eIF4F (of which eIF4G is a subunit) for the 5′ cap structure. In mammals, PABP interacts with a novel PABP-interacting protein that also binds eIF4A. The interaction between PABP and those initiation factors associated with the 5′ terminus of an mRNA may also explain the role of PABP during mRNA turnover, as it protects the 5′ cap from attack by Dcp1p, the decapping enzyme. Several of those mRNAs that have evolved functional equivalents to a cap or a poly(A) tail nevertheless require a functional interaction between terminal regulatory elements similar to that observed between the 5′ cap and poly(A) tail, suggesting that efficient translation is predicated on communication between largely-separated regulatory elements within an mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号