首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

2.
Certain cost-effective carbohydrate sources in crude as well as after purification were utilized as the sole sources of carbon for gluconic acid production using Aspergillus niger ORS-4.410 under submerged fermentation. Crude grape must (GM) and banana-must (BM) resulted into significant levels of gluconic acid production i.e. 62.6 and 54.6 g/l, respectively. The purification of grape and banana-must led to a 20–21% increase in gluconic acid yield. Molasses as such did not favour gluconate production (12.0 g/l) but a significant increase in production (60.3 g/l) was observed following hexacyanoferrate (HCF) treatment of the molasses. Rectified grape must (RGM) appeared to be best suitable substrate which after 144 h resulted in 73.2 g of gluconic acid/l with 80.6% yield followed by the yield obtained from the rectified banana must (RBM) (72.4%) and treated cane molasses (TM) (61.3%). Abundant growth of mould A. niger ORS-4.410 was observed with crude grape (0.131 g/l/h) and banana must (0.132 g/l/h).  相似文献   

3.
黑曲霉固态发酵生产单宁酶的条件优化   总被引:1,自引:0,他引:1  
研究采用响应面法优化黑曲霉固态发酵生产单宁酶的培养条件。应用Plackett—Burman试验筛选出重要影响因子:五倍子粉含量、(NH4)2SO4浓度以及接种孢子量,最陡爬坡试验逼近最大响应区域。应用Box.Behnken响应面试验对重要影响因子进一步优化。得到最佳培养条件:每250mL三角瓶中装入1.0g五倍子粉、4.4g稻壳和0.5g麸皮、液固比(mL/g)2:1且营养盐溶液组成为(NH4)2s0421g/L、MgSO4·7H2O1g/L、NaCl1g/L,培养基pH自然,接种5.7×10^7个孢子后在30℃温度下培养4d。在此条件下,单宁酶产量从40U/g提高到114U/g,3次重复验证性试验平均值为115U/g,验证了模型的可靠性。  相似文献   

4.
AIMS: To exploit conidiospores of Aspergillus niger as a vector for glucose oxidase extraction from solid media, and their direct use as biocatalyst in the bioconversion of glucose to gluconic acid. METHODS AND RESULTS: Spores of A. niger (200 h old) were shown to fully retain all the glucose oxidase synthesized by the mycelium during solid-state fermentation (SSF). They acted as catalyst and carried out the bioconversion reaction effectively, provided they were permeabilized by freezing and thawing. Glucose oxidase activity was found retained in the spores even after repeated washings. Average rate of reaction was 1.5 g l(-1) h(-1) with 102 g l(-1) of gluconic acid produced out of 100 g l(-1) glucose consumed after approx. 100 h reaction, which corresponded to a molar yield close to 93%. These results were obtained with permeabilized spores in the presence of a germination inhibitor, sodium azide. CONCLUSIONS: Spores of A. niger served as efficient catalyst in the model bioconversion reaction after permeabilization. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first detailed study on the ability of A. niger spores to act as reservoir of enzyme synthesized during SSF without its release into solid media. Use of this material served as an innovative concept for enzyme extraction and purification from a solid medium. Moreover, this approach could compete efficiently with the conventional use of mycelial form of the fungus in gluconic acid production.  相似文献   

5.
Aims:  To investigate the ability of the citric acid-producing strain Aspergillus niger ATCC 9142 to utilize the ethanol fermentation co-product corn distillers dried grains with solubles for citric acid production following various treatments.
Methods and Results:  The ability of A. niger ATCC 9142 to produce citric acid and biomass on the grains was examined using an enzyme assay and a gravimetric method, respectively. Fungal citric acid production after 240 h was higher on untreated grains than on autoclaved grains or acid-hydrolysed grains. Fungal biomass production was enhanced after autoclaving and acid-hydrolysis of the grains. Phosphate supplementation to the grains slightly stimulated citric acid production while methanol addition decreased its synthesis. Using the phosphate-supplemented grains, the optimal incubation temperature, initial moisture content of the grains and the length of fermentation time for ATCC 9142 citric acid production were determined to be 25°C, 82% and 240 h, respectively.
Conclusions:  A. niger ATCC 9142 synthesized citric acid on corn distillers dried grains with solubles. The phosphate-treated grains increased citric acid production by the strain.
Significance and Impact of the Study:  The ethanol fermentation co-product corn distillers dried grains with solubles could be useful commercially as a substrate for A. niger citric acid production.  相似文献   

6.
Ellagic acid is one of the most bioactive antioxidants with important applications in pharmaceutical, cosmetic, and food industries. However, there are few biotechnological processes developed for its production, because it requires precursors (ellagitannins) and the corresponding biocatalyst (ellagitannase). The aim of this study was to optimize the culture conditions for ellagitannase production by Aspergillus niger in solid-state fermentation (SSF). The bioprocess was carried out into a column bioreactor packed with polyurethane foam impregnated with an ellagitannins solution as carbon source. Four strains of Aspergillus niger (PSH, GH1, HT4, and HC2) were evaluated for ellagitannase production. The study was performed in two experimental steps. A Plackett–Burman design was used to determine the influencing parameters on ellagitannase production. Ellagitannins concentration, KCl, and MgSO4 were determined to be the most significant parameters. Box–Behnken design was used to define the interaction of the selected parameters. The highest enzyme value was obtained by A. niger PSH at concentrations of 7.5 g/L ellagitannins, 3.04 g/L KCl, and 0.76 g/L MgSO4. The methodology followed here allowed increasing the ellagitannase activity 10 times over other researcher results (938.8 U/g ellagitannins). These results are significantly higher than those reported previously and represent an important contribution for the establishment of a new bioprocess for ellagic acid and ellagitannase production.  相似文献   

7.
8.
Experimental data on continuous fermentation of sucrose and glucose solution at low pH to gluconic acid by Asprgillus niger immobilized on cellulose fabric show complex dynamic behaviour including a decline in yield. The data have been analyzed using an artificial intelligence based symbolic regression technique to provide a mathematical model for predicting values of conversion 5, 10 and 15 h ahead values of conversion. These predictions can be used during continuous operations to monitor the bioprocess and adjust the residence time of fermentation to get complete and more efficient conversion of sucrose or glucose to gluconic acid.  相似文献   

9.
A study was performed to understand the physiology and biochemical mechanism of citric acid accumulation during solid state fermentation of sweet potato using Aspergillus niger Yang No.2. A low citrate-producing mutant was isolated followed by a comparative study of the fermentation process and selected physiological and biochemical parameters. In contrast with the parent strain, the mutant strain displayed lower concentrations, yields and production rates of citric acid, accompanied by higher concentrations, yields and production rates of oxalic acid. In addition, the mutant utilized starch at a lower rate although higher concentrations of free glucose accumulated in the cultures. Biochemical analyses revealed lower rates of glucose uptake and hexokinase activity of the mutant strain in comparison with the parent strain. It is proposed that, in common with submerged fermentation, over-production of citric acid in solid state fermentation is related to an increased glucose flux through glycolysis. At low glucose fluxes, oxalic acid is accumulated.  相似文献   

10.
Aspergillus foetidus ACM 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4g of citric acid per 100g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30°C, an unadjusted initial pH of 3.4, a particle size of 2mm and 5ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.  相似文献   

11.
黑曲霉固态发酵及酶解玉米皮   总被引:2,自引:0,他引:2  
以玉米提取淀粉后的玉米皮渣为主要原料,采用黑曲霉固态发酵法产酶再酶解的二步法降解玉米皮中纤维素类物质。经Plackett-Burman法及响应面设计优化发酵条件得:温度30℃,接种量10%,初始水分体积分数60%,物料厚度2.47 cm,初始pH 5.79,发酵时间6 d;滤纸比酶活可达11.01 U/g,较原始酶活提高了40.61%;产酶结束后加入pH 4.8醋酸-醋酸钠缓冲液,置于50℃下酶解144 h,中性洗涤纤维与酸性洗涤纤维降解率分别为46.09%、48.82%,还原糖质量分数达到9.02%。  相似文献   

12.
Aspergillus niger ORS-4.410, a mutant of Aspergillus niger ORS-4 was produced by repeated irradiation with UV rays. Treatments with chemical mutagnes also resulted into mutant strains. The mutants differed from the parent strain morphologically and in gluconic acid production. The relationship between UV treatment dosage, conidial survival and frequency of mutation showed the maximum frequency of positive mutants (25%) was obtained along with a conidial survival of 59% after second stage of UV irradiation. Comparison of gluconic acid production of the parent and mutant ORS-4.410 strain showed a significant increase in gluconic acid production that was 87% higher than the wild type strain. ORS-4.410 strain when transferred every 15 days and monitored for gluconic acid levels for a total period of ten months appeared stable. Mutant ORS-4.410 at 12% substrate concentration resulted into significantly higher i.e. 85-87 and 94-97% yields of gluconic acid under submerged and solid state surface conditions respectively. Further increase in substrate concentration appeared inhibitory. Maximum yield of gluconic acid was obtained after 6 days under submerged condition and decreased on further cultivation. Solid state surface culture condition on the other hand resulted into higher yield after 12 days of cultivation and similar levels of yields continued thereafter.  相似文献   

13.
This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett–Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box–Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5–6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the “generally regarded as safe” (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF).  相似文献   

14.
AIMS: To determine which citric acid-producing strain of Aspergillus niger utilized wet corn distillers grains most effectively to produce citric acid. METHODS AND RESULTS: Citric acid and biomass production by the fungal strains were analysed on the untreated grains or autoclaved grains using an enzyme assay and a gravimetric method respectively. Fungal citric acid production on the grains was found to occur on the untreated or autoclaved grains. The highest citric acid level on the grains was produced by A. niger ATCC 9142. The autoclaved grains supported less citric acid production by the majority of strains screened. Biomass production by the fungal strains on the untreated or autoclaved grains was quite similar. The highest citric acid yields for A. niger ATCC 9142, ATCC 10577, ATCC 11414, ATCC 12846 and ATCC 26550 were found on the untreated grains. Treatment of the grains had little effect on citric acid yields based on reducing sugars consumed by A. niger ATCC 9029 and ATCC 201122. CONCLUSIONS: It is feasible for citric acid-producing strains of A. niger to excrete citric acid on wet corn distillers grains whether the grains are treated or untreated. The most effective citric acid-producing strain of A. niger was ATCC 9142. SIGNIFICANCE AND IMPACT OF THE STUDY: The study shows that the ethanol processing co-product wet corn distillers grains could be utilized as a substrate for the commercial production of citric acid by A. niger without treatment of the grains.  相似文献   

15.
利用黑曲霉固态发酵啤酒糟生产饲料复合酶的研究   总被引:2,自引:0,他引:2  
以啤酒糟为主要基质,利用黑曲霉固态发酵生产酸性蛋白酶、木聚糖酶和纤维素酶等多种饲料复合酶,研究了黑曲霉固态发酵培养基组成对复合酶酶活的影响,确定最优培养基配方为:啤酒糟75%,麸皮25%,硫酸铵1%,KH_2PO_4 0.2%,MnSO_4 0.1%、ZnSO_4 0.2%,料水比1:2。在适宜的发酵条件下,经30℃发酵5 d,烘干后得到的复合酶制剂中,具有多种酶活性(以干基计)。其中酸性蛋白酶活力3 800 U/g,木聚糖酶活力12 00 U/g和纤维素酶活力18 U/g。  相似文献   

16.
Gluconic acid was produced in repeated batch processes with Aspergillus niger AM-11, immobilized in pumice stone particles using an unconventional oxygenation of culture media based on the addition of H2O2, decomposed by catalase to O2 and water. The highest gluconic acid productivity of 8.2 g l–1 h–1 was reached with 30 g immobilized mycelium per 150 ml, 10% (w/v) glucose, at 24 °C and pH 6.5, with O2 at 100% saturation. The immobilized mycelium was successfully reused up to 8 times in 1-h batches with only a slight loss (11%) of gluconic acid productivity.  相似文献   

17.
Xylanase production by Aspergillus niger NRRL‐567 in solid‐state fermentation (koji fermentation) was optimized using 24 factorial design and response surface methodology. The evaluated variables were the initial moisture level and concentration of inducers [veratryl alcohol (VA), copper sulphate (CS), and lactose (LAC)], leading to the response of xylanase production. Initial moisture level and LAC were found to be the most significant variable for xylanase production (p<0.05). The highest xylanase production was observed with 3578.8 ± 65.3 IU/gds (gram dry substrate) under optimal conditions using initial moisture of 85% (v/w), pH 5.0 and inducers VA (2 mM/kg), LAC 2% (w/w), and CS (1.5 mM/kg) after 48 h of incubation time. Higher xylanase activity of 3952 ± 78.3 IU/gds was attained during scale‐up of the process in solid‐state tray fermentation under optimum conditions after 72 h of incubation time. The present study demonstrates that A. niger NRRL‐567 can efficiently be used to achieve xylanase production with an economical and environmental benefit in solid‐state tray fermentation. The developed process can be used to develop an effective process for commercially feasible bioproduction of xylanases for speciality applications, such as conversion of lignocellulosic biomass to biofuels and other value‐added products.  相似文献   

18.
Summary Grape must and concentrated rectified grape must were used for the gluconic acid synthesis using Aspergillus niger batch cultures. The latter substrate was the better, with a production, at 72 h, of 67.43 g/l and a yield (calculated on converted glucose) of 0.96. Citric acid was also observed as a by-product. In order to decrease the residual fructose content, at the end of the gluconate production cycle, an experimental model of sequential fermentation A. nigerRhizopus arrhizus was proposed for the synthesis of gluconic and fumaric acid. The use of Glucose-isomerase (EC 5.3.1.5) to convert fructose to glucose was also tested.  相似文献   

19.
Abstract The complex-forming compound oxalic acid can effectively solubilise metals such as aluminium, iron, lithium, and manganese. In order to produce high amounts of oxalic acid for biohydrometallurgical processes, it was the aim of this work to optimise oxalic acid production by Aspergillus niger , a fungus well known for its ability to produce oxalic acid. A. niger excreted 427 mmol oxalic acid 1−1 if it was cultivated in a pH-controlled (pH 6.0) fed-batch run in a 2-1 stirred tank reactor. Sucrose and lactose permeate were suitable carbon sources for oxalic acid production. In sucrose medium, A. niger produced high amounts of gluconic and oxalic acids, whereas in lactose permeate medium only oxalic acid was produced. Cultivation in green syrup and molasses media lead to high yields of biomass, but low oxalic acid production (<20 mmol 1−1).  相似文献   

20.
黑曲霉过氧化氢酶发酵过程的数学模型   总被引:2,自引:0,他引:2  
研究了黑曲霉发酵生产过程氧化氢酶的分批发酵动力学,并建立了发酵过程菌体生长,基质消耗及酶合成的随时间变化的数学模型。Logistic方程,Luedekin-Piret方程及与Luedeking-Piret方程相似的基质消耗方程能够很好地分别描述黑曲霉细胞的生长,发酵产酶过程及葡萄糖的消耗,过氧化氢酶的发酵合成是生长耦联的,研究中还将3个动力学模型的预测值和实验值进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号