首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Possibilities to account for the mechanism of freeze-thaw injury to isolated protoplasts of Spinacia oleracea L. cv. Winter Bloomsdale were investigated. A freeze-thaw cycle to −3.9 C resulted in 80% lysis of the protoplasts. At −3.9 C, protoplasts are exposed to the equivalent of a 2.1 osmolal solution. Isolated protoplasts behave as ideal osmometers in the range of concentrations tested (0.35 to 2.75 osmolal), arguing against a minimum critical volume as a mechanism of injury. Average protoplast volume after a freeze-thaw cycle was not greatly different than the volume before freezing, arguing against an irreversible influx of solutes while frozen. A wide variety of sugars and sugar alcohols, none of which was freely permeant, were capable of protecting against injury which occurred when protoplasts were frozen in salt solutions. The extent of injury was also dependent upon the type of monovalent ions present, with Li = Na > K = Rb = Cs and Cl ≥ Br > I, in order of decreasing protoplast survival. Osmotic conditions encountered during a freeze-thaw cycle were established at room temperature by exposing protoplasts to high salt concentrations and then diluting the osmoticum. Injury occurred only after dilution of the osmoticum and was correlated with the expansion of the plasma membrane. Injury observed in frozen-thawed protoplasts was correlated with the increase in surface area the plasma membrane should have undergone during thawing, supporting the contention that contraction of the plasma membrane during freezing and its expansion during thawing are two interacting lesions which cause protoplast lysis during a freezethaw cycle.  相似文献   

2.
Fusion of vesicular membranes with the plasma membrane during pressure-driven swelling of guard cell protoplasts was studied using patch clamp capacitance measurements. Hydrostatic pressure pulses were applied via the patch pipette and resulted in an immediate and linear increase in membrane capacitance, a parameter proportional to the surface area. In any given protoplast, pressure-stimulated increases in membrane capacitance could be provoked repetitively. However, the rate of rise in capacitance upon the same strength of stimulation decreased exponentially with time (tau = 4 min) for subsequent pressure stimuli. This process was the result of a desensitisation of the plasma membrane to mechanical forces. Incubation of guard cell protoplasts in cytochalasin D, which depolymerises actin filaments, nearly abolished this desensitisation process. These results suggest that membrane stretch initiates a reactive process that may fortify or stabilise the plasma membrane of guard cell protoplasts.  相似文献   

3.
Arora R  Palta JP 《Plant physiology》1991,95(3):846-852
Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase.  相似文献   

4.
Modifications occurring in the plasma membrane and their relationship to newly synthesized microfibrils were examined in regenerating protoplasts of Candida albicans by freeze-fracture electron microscopy. Freshly prepared protoplasts showed no residual wall material, and long invaginations covered the surface of the plasma membrane. Analysis of the external face (E-face) of the plasma membrane showed a significant decrease in the number of intramembranous particles (IMP) in comparison with the original cells. After 40 min incubation in regeneration medium, newly synthesized microfibrils which seemed to originate from protrusions in the plasma membrane were observed. The plasma membrane showed important modifications with respect to IMP. After 3 h 45 min, the cells were covered by an abnormal wall which showed isolated fibrils partially embedded in the matrix material. The plasma membrane of these partially regenerated protoplasts was similar to that of original cells. After 8 h, regeneration of the protoplasts seemed to be complete as no differences from the original cells were detected in the plasma membrane or the wall. Calcofluor white altered the deposition of wall polymers during regeneration, but did not modify the plasma membrane of the protoplasts.  相似文献   

5.
Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.  相似文献   

6.
Maximum freezing tolerance of Arabidopsis thaliana L. Heyn (Columbia) was attained after 1 week of cold acclimation at 2[deg]C. During this time, there were significant changes in both the lipid composition of the plasma membrane and the freeze-induced lesions that were associated with injury. The proportion of phospholipids increased from 46.8 to 57.1 mol% of the total lipids with little change in the proportions of the phospholipid classes. Although the proportion of di-unsaturated species of phosphatidylcholine and phosphatidylethanolamine increased, mono-unsaturated species were still the preponderant species. The proportion of cerebrosides decreased from 7.3 to 4.3 mol% with only small changes in the proportions of the various molecular species. The proportion of free sterols decreased from 37.7 to 31.2 mol%, but there were only small changes in the proportions of sterylglucosides and acylated sterylglucosides. Freezing tolerance of protoplasts isolated from either nonacclimated or cold-acclimated leaves was similar to that of leaves from which the protoplasts were isolated (-3.5[deg]C for nonacclimated leaves; -10[deg]C for cold-acclimated leaves). In protoplasts isolated from nonacclimated leaves, the incidence of expansion-induced lysis was [less than or equal to]10% at any subzero temperature. Instead, freezing injury was associated with formation of the hexagonal II phase in the plasma membrane and subtending lamellae. In protoplasts isolated from cold-acclimated leaves, neither expansion-induced lysis nor freeze-induced formation of the hexagonal II phase occurred. Instead, injury was associated with the "fracture-jump lesion," which is manifested as localized deviations of the plasma membrane fracture plane to subtending lamellae. The relationship between the freeze-induced lesions and alterations in the lipid composition of the plasma membrane during cold acclimation is discussed.  相似文献   

7.
Summary Evidence is presented to support the hypothesis that electrical potentials generated during the freezing of aqueous solutions (the Workman-Reynolds effect) may contribute to the destabilization of the plasma membrane and cryoinjury of isolated protoplasts. Specifically. (1) electric potential diffrences of sufficient magnitude to cause lysis of the plasma membrane occur during the rapid freezing of isolated protoplasts suspended in sorbitol: (2) survival of protoplasts is inversely correlated with the magnitude of the potential difference and (3) cold acclimation increases the stability of the plasma membrane to applied electric fields. A discussion is given of the different physical phenomena though to be involved in the Workman-Reynolds effect. The basis equations for these phenomena are outlined.  相似文献   

8.
A freeze-thaw cycle to −12°C induced several physical and compositional changes in the microsomal membranes isolated from crown tissue of winter wheat (Triticum aestivum L. cv Frederick). Exposing 7-day-old, nonacclimated seedlings to a single freeze-thaw cycle prevented regrowth of the crown and resulted in increased membrane semipermeability. The phospholipid and protein content of microsomal membranes isolated from the crowns decreased by 70 and 50%, respectively. Microsomal membranes isolated after the lethal freeze-thaw stress, and liposomes prepared from total membrane lipids, exhibited greater microviscosity, measured by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The number of free thiol groups per milligram membrane protein, measured using the specific fluorescent probe, N-dansylaziridine, decreased after freezing. In contrast, acclimated wheat seedlings which showed increased freezing tolerance, as indicated by survival and ion leakage, suffered almost no effects from the freeze thaw treatment as determined by measurements of membrane microviscosity, phospholipid content, protein content, or danzylaziridine fluorescence. An examination of membranes isolated from frozen tissue showed that most of the changes occurred during the freezing and not during the thawing phase.  相似文献   

9.
Summary Osmotic contraction of protoplasts isolated from cold acclimated leaves ofSecale cereale L. cv. Puma results in the formation of exocytotic extrusions of the plasma membrane. Numerous knobs or polyps were observed on the surface of the protoplasts with scanning electron microscopy. In thin sections, the extrusions were bounded by the plasma membrane with a densely osmiophilic interior. Cross-fracturing of the extrusions revealed aparticulate bodies within, a further indication that the interior of the extrusions was predominantly lipid material. Freeze-fracture of the plasma membrane suggests a possible source of this lipid material. Following osmotic contraction, the particle density on the plasma membrane protoplasmic face (PFp) increased, being reflected in both a substantial increase in paracrystalline arrays and an increase in the particle density in non-crystalline regions. This increase in particle density indicates that lipid material is preferentially lost from the plasma membrane during contraction. The density on the exoplasmic face (EFp) did not change. Together, these findings suggest that during hypertonic contraction of acclimated protoplasts, lipid material is preferentially subducted from the plasma membrane and sequestered into lipid bodies (the osmiophilic regions). The formation of lipid bodies and extrusions was readily reversible. Following osmotic expansion of acclimated protoplasts, the extrusions were retracted back into the plane of the plasma membrane.Department of Agronomy Series Paper no. 1497.  相似文献   

10.
Summary The stress and strain (surface tension and fractional change in area) in the plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv Puma) were measured during osmotic expansions from isotonic into a range of more dilute solutions. The membrane surface tension increases rapidly to a maximum and then decreases slowly with some protoplasts lysing in all phases of the expansion. The maximum surface tension is greater for rapid expansions, and protoplasts lyse earlier during rapid expansion. Over the range of expansion rates investigated, the area at which lysis occurs is not strongly dependent on expansion rate. The value of the maximum tension is determined by the expansion rate and the rate at which new material is incorporated into the membrane. During osmotic expansion, protoplasts isolated from cold-acclimated plants incorporate material faster than do those from nonacclimated plants and thus incur lower membrane tensions.  相似文献   

11.
The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration.

Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law—the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  相似文献   

12.
When cooled at rapid rates to temperatures between −10 and −30°C, the incidence of intracellular ice formation was less in protoplasts enzymically isolated from cold acclimated leaves of rye (Secale cereale L. cv Puma) than that observed in protoplasts isolated from nonacclimated leaves. The extent of supercooling of the intracellular solution at any given temperature increased in both nonacclimated and acclimated protoplasts as the rate of cooling increased. There was no unique relationship between the extent of supercooling and the incidence of intracellular ice formation in either nonacclimated or acclimated protoplasts. In both nonacclimated and acclimated protoplasts, the extent of intracellular supercooling was similar under conditions that resulted in the greatest difference in the incidence of intracellular ice formation—cooling to −15 or −20°C at rates of 10 or 16°C/minute. Further, the hydraulic conductivity determined during freeze-induced dehydration at −5°C was similar for both nonacclimated and acclimated protoplasts. A major distinction between nonacclimated and acclimated protoplasts was the temperature at which nucleation occurred. In nonacclimated protoplasts, nucleation occurred over a relatively narrow temperature range with a median nucleation temperature of −15°C, whereas in acclimated protoplasts, nucleation occurred over a broader temperature range with a median nucleation temperature of −42°C. We conclude that the decreased incidence of intracellular ice formation in acclimated protoplasts is attributable to an increase in the stability of the plasma membrane which precludes nucleation of the supercooled intracellular solution and is not attributable to an increase in hydraulic conductivity of the plasma membrane which purportedly precludes supercooling of the intracellular solution.  相似文献   

13.
The life cycle of Dictyostelium discoideum can be divided into two mutually exclusive phases: growth and development. A distinguishing characteristic of the two phases is the absence of intercellular communication during vegative growth, and the many forms of such interaction during development. We have investigated the role of the cell surface membrane during the aggregation and development of this organism. We have asked the question: Are there molecules on the cell surface which are necessary for aggregation, and if so, can they be isolated in a biologically active membrane preparation? Further, when do these molecules appear during normal development, and does the interaction between two neighboring cell surfaces signal the cell or affect their subsequent development in any way? We have been able to isolate a partially purified plasma membrane fraction which is capable of specifically blocking the aggregation of other cells. Additional characterization of this preparation suggests that isolated aggregation phase membranes display a new, or newly exposed, heat-stable component which is capable of interacting with vegetative cells in such a way as to halt development.  相似文献   

14.
The freezing tolerance and incidence of two forms of freezing injury (expansion-induced lysis and loss of osmotic responsiveness) were determined for protoplasts isolated from rye leaves (Secale cereale L. cv Puma) at various times during cold acclimation. During the first 4 weeks of the cold acclimation period, the LT50 (i.e. the minimum temperature at which 50% of the protoplasts survived) decreased from −5°C to −25°C. In protoplasts isolated from nonacclimated leaves (NA protoplasts), expansion-induced lysis (EIL) was the predominant form of injury at the LT50. However, after only 1 week of cold acclimation, the incidence of EIL was reduced to less than 10% at any subzero temperature; and loss of osmotic responsiveness was the predominant form of injury, regardless of the freezing temperature. Fusion of either NA protoplasts or protoplasts isolated from leaves of seedlings cold acclimated for 1 week (1-week ACC protoplasts) with liposomes of dilinoleoylphosphatidylcholine also decreased the incidence of EIL to less than 10%. Fusion of protoplasts with dilinoleoylphosphatidylcholine diminished the incidence of loss of osmotic responsiveness, but only in NA protoplasts or 1-week ACC protoplasts that were frozen to temperatures over the range of -5 to -10°C. These results suggest that the cold acclimation process, which results in a quantitative increase in freezing resistance, involves several different qualitative changes in the cryobehavior of the plasma membrane.  相似文献   

15.
Mesophyll protoplasts were isolated from unhardened and cold-acclimated leaves of Valerianella locusta L. and subjected to freeze-thaw treatment. To evaluate the extent and course of freezing injury, photosynthetic reactions of whole protoplasts and of free thylakoid membranes, liberated from protoplasts by osmotic lysis, were measured. In addition, the integrity of the protoplasts was determined by microscopy. The results reveal an increased frost tolerance of protoplasts isolated from acclimated leaves with respect to all parameters measured. CO2-dependent O2 evolution (representing net photosynthetic CO2 fixation of protoplasts) was the most freezing-sensitive reaction; its inhibition due to freeze-thaw treatment of protoplasts was neither correlated with disintegration of the plasma membrane, nor was it initiated by inactivation of the thylakoid membranes. The frost-induced decline of protoplast integrity was not closely correlated to thylakoid damage either. Freezing injury of the thylakoid membranes was manifested by inhibition of photosynthetic electron transport and photophosphorylation. Both photosystems were affected by freezing and thawing with strongest inhibition occurring in the water-oxidation system or at the oxidizing site of photosystem II. Photophosphorylation responded more sensitively to freezing stress than electron transport, although uncoupling (increased permeability of the thylakoid membranes to protons) was not a conspicuous effect. The data are discussed in relation to freezing injury in leaves and seem to indicate that frost damage in vivo is initiated at multiple sites.Abbreviations Chl chlorphyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Hepes 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - MES 2-(N-morpholino)-ethanesulfonic acid - PS I photosystem I - PS II photosystem II  相似文献   

16.
17.
Summary The plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv. Puma) can withstand a maximum elastic stretching of about 2%. Larger area expansions involve the incorporation of new material into the membrane. The dynamics of this process during expansion from isotonic solutions and the probable frequency of lysis have been measured as a function of membrane tension in populations of protoplasts isolated from both cold-acclimated and nonacclimated plants. To a first approximation, both increase exponentially with tension. An analytical solution is reported for the membrane tension as a function of time during an arbitrary expansion in area.  相似文献   

18.
D. K. Hincha  U. Heber  J. M. Schmitt 《Planta》1990,180(3):416-419
We have isolated protein fractions from cold-acclimated, frost-hardy cabbage (Brassica oleracea L.) and spinach (Spinacia oleracea L.) leaves which protect isolated thylakoids from non-hardy spinach against mechanical membrane rupture during an in-vitro freeze-thaw cycle. No protective activity was found in similar preparations from non-hardy leaves. The proteins protected the membranes from damage by reducing their solute permeability during freezing and by increasing their expandability during thawing. The proteins act by increasing the resistance of the membranes against the osmotic stress to which they are exposed during a freeze-thaw cycle. In the absence of cryoprotectants this stress results in membrane rupture.This investigation was supported by the Deutsche Forschungsge-meinschaft.  相似文献   

19.
Two-dimensional crystalline arrays of freeze-fracture particles are known to occur in abundant quantities in the plasma membrane of stationary state yeast cells. Although these crystalline arrays are seen only infrequently in cells during mid-exponential growth, we now observe that formation of crystalline arrays can be induced in such cells by a “metabolic starvation” protocol. Surprisingly, starvation-induced formation of crystalline patches can be prevented by inhibition of new protein synthesis during the starvation period. The size and quantity of crystalline arrays can be increased by removal of the cell wall prior to starvation. Induction of crystalline arrays in protoplasts has made it possible to investigate the surface morphology of the crystalline particles in isolated membranes as well as at the extracellular surface of intact protoplasts. The stability of isolated crystalline arrays to several detergents has been investigated and conditions have been found that result in improved morphological purity of the isolated crystalline patches.  相似文献   

20.
Responses of the plasma membrane to low temperatures   总被引:7,自引:0,他引:7  
The plasma membrane is considered to be the primary site of injury when plant cells are subjected to extracellular freezing. In order for plants or plant cells to acquire freezing tolerance, it is, thus, necessary that the plasma membrane increases its cryostability during freeze-thaw excursion. During cold acclimation both under natural and artificial conditions, there are compositional, structural and functional changes occurring in the plasma membrane, many, if not all, of which ultimately contribute to increased stability of the plasma membrane under freezing conditions. In addition, changes in the cytosol or intracellular compartments also affect the cryobehaviour of the plasma membrane during freeze-induced dehydration. Although many alterations occurring during cold acclimation influence the cryobehaviour of the plasma membrane comprehensively, recent advances in functional genomics approaches provide interesting information on the function of specific proteins for plasma membrane behaviour under freezing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号