首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

2.
Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at 600 MPa apparently short-cuts at least part of the Ala- and AGFK-induced germination pathways. Inhibitors of nutrient-induced germination (HgCl(2) and Nalpha-P-tosyl-L-arginine methyl ester) also inhibit pressure-induced germination at 600 MPa, suggesting that germination at 600 MPa involves activation of a true physiological germination pathway and is therefore not merely a physico-chemical process in which water is forced into the spore protoplast.  相似文献   

3.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

4.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

5.
Suspensions of Bacillus cereus T, B. subtilis, and B. pumilus spores in water or potassium phosphate buffer were germinated by hydrostatic pressures of between 325 and 975 atm. Kinetics of germination at temperatures within the range of 25 to 44 degrees C were determined, and thermodynamic parameters were calculated. The optimum temperature for germination was dependent on pressure, species, suspending medium, and storage time after heat activation. Germination rates increased significantly with small increments of pressure, as indicated by high negative deltaV values of -230 +/- 5 cm3/mol for buffered B. subtilis (500 to 700 atm) and B. pumilus (500 atm) spores and -254 +/- 18 cm3/mol for aqueous B. subtilis (400 to 550 atm) spores at 40 degrees C and -612 +/- 41 cm3/mol for B. cereus (500 to 700 atm) spores at 25 degrees C. The ranges of thermodynamic constants calculated at 40 degrees C for buffered B. pumilus and B. subtilis spores at 500 and 600 atm and for aqueous B. subtilis spores at 500 atm were: Ea = 181,000 to 267,000 J/mol; deltaH = 178,000 to 264,000 J/mol; deltaG = 94,000 to 98,300 J/mol; deltaS = 264 to 544 J/mol per degree K. These values are consistent with the concept that the transformation of a dormant to a germinating spore induced by hydrostatic pressure involves either hydration or a reduction in the visocosity of the spore core and a conformational change of an enzyme.  相似文献   

6.
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.  相似文献   

7.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

8.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

9.
AIMS: To measure rates of release of small molecules during pressure germination of Bacillus subtilis spores, and the role of SpoVA proteins in dipicolinic acid (DPA) release. METHODS AND RESULTS: Rates of DPA release during B. subtilis spore germination with pressures of 150 or 500 megaPascals were much higher in spores with elevated levels of SpoVA proteins, and spores with a temperature-sensitive mutation in the spoVA operon were temperature-sensitive in DPA release during pressure germination. Spores also released arginine and glutamic acid, but not AMP, during pressure germination. CONCLUSIONS: Pressure germination of B. subtilis spores causes release of many small molecules including DPA. SpoVA proteins are involved in the release of DPA, perhaps because SpoVA proteins are a component of a DPA channel in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of pressure germination of spores of Bacillus species, a process that has significant potential for usage in the food industry.  相似文献   

10.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

11.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

12.
Aims:  To determine the germination and inactivation of Bacillus cereus spores lacking various germination proteins using moderately high pressure (MHP) and heat.
Methods:  The inactivation and germination of wild-type B. cereus spores in buffer by MHP (150 MPa) at various temperatures, as well as the MHP inactivation and germination of B. cereus spores lacking individual germinant receptors and monovalent cation antiporters, was determined.
Results:  Loss of individual germinant receptors had no large effects on spore inactivation or germination, although germination of receptor-deficient spores was generally slightly decreased. Loss of the GerN in particular the GerN and GerT antiporters also decreased spore germination by MHP, especially at 40 and 50°C.
Conclusions:  Both inactivation and germination of B. cereus spores by MHP increased with rise of temperature; however, mutant strains lacking individual germinant receptor had similar levels of germination as compared to wild-type spores. To evaluate the role of germinant receptors in MHP, a strain lacking a large number of germinant receptors is needed.
Significance and Impact of the Study:  The results of this work may lead to a better understanding of how MHP causes germination of spores of B. cereus .  相似文献   

13.
14.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

15.
梁亮  盖玉玲  胡坤  刘钢 《微生物学报》2008,48(3):281-286
芽孢萌发的营养诱导剂通过与特异的萌发受体结合激活下游的萌发过程,从而使芽孢经过一系列的遗传变化及生化反应恢复营养生长.从苏云金芽孢杆菌(Bacillus thuringiensis)中克隆到一个与枯草芽孢杆菌(Bacillus subtilis)gerA操纵子和蜡状芽孢杆菌(Bacillus cereus)gerR操纵子同源的gerA操纵子.苏云金芽孢杆菌gerA操纵子含有3个开放读码框:gerAA、gerAC和gerAB,该操纵子在产孢起始3个小时后开始转录.gerA的破坏阻断了L-丙氨酸诱导的芽孢萌发并且延迟了肌苷诱导的萌发.在L-丙氨酸诱导芽孢萌发的过程中D-环丝氨酸能够提高芽孢的萌发率.  相似文献   

16.
We have studied pressure-induced germination of Bacillus subtilis spores at moderate (100 MPa) and high (500 to 600 MPa) pressures. Although we found comparable germination efficiencies under both conditions by using heat sensitivity as a criterion for germination, the sensitivity of pressure-germinated spores to some other agents was found to depend on the pressure used. Spores germinated at 100 MPa were more sensitive to pressure (>200 MPa), UV light, and hydrogen peroxide than were those germinated at 600 MPa. Since small, acid-soluble proteins (SASPs) and dipicolinic acid (DPA) are known to be involved in spore resistance to UV light and hydrogen peroxide, we studied the fate of these compounds during pressure germination. DPA was released upon both low- and high-pressure germination, but SASP degradation, which normally accompanies nutrient-induced germination, occurred upon low-pressure germination but not upon high-pressure germination. These results adequately explain the UV and hydrogen peroxide resistance of spores germinated at 600 MPa. The resistance to pressure inactivation of 600-MPa-germinated spores could also, at least partly, be attributed to α/β-type SASPs, since mutants deficient in α/β-type SASPs were more sensitive to inactivation at 600 MPa. Further, germination at 100 MPa resulted in rapid ATP generation, as is the case in nutrient-induced germination, but no ATP was formed during germination at 600 MPa. These results suggest that spore germination can be initiated by low- and high-pressure treatments but is arrested at an early stage in the latter case. The implications for the use of high pressure as a preservation treatment are discussed.  相似文献   

17.
Spore germination   总被引:2,自引:0,他引:2  
The germination of dormant spores of Bacillus species is the first crucial step in the return of spores to vegetative growth, and is induced by nutrients and a variety of non-nutrient agents. Nutrient germinants bind to receptors in the spore's inner membrane and this interaction triggers the release of the spore core's huge depot of dipicolinic acid and cations, and replacement of these components by water. These latter events trigger the hydrolysis of the spore's peptidoglycan cortex by either of two redundant enzymes in B. subtilis, and completion of cortex hydrolysis and subsequent germ cell wall expansion allows full spore core hydration and resumption of spore metabolism and macromolecular synthesis.  相似文献   

18.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80 degrees C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70 degrees C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60 degrees C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

19.
AIMS: To establish whether germination of Botrytis cinerea was affected by the symbiosis of Bacillus subtilis L-form bacteria with Chinese cabbage. METHODS AND RESULTS: Germinating seeds of Chinese cabbage were co-cultivated with either L-forms of Bacillus subtilis or 5% (w/v) mannitol by soaking for 3 h. Seeds were then washed in sterile water, sown on a minimal medium and incubated in controlled conditions. L-form symbiosis was detected over a time course by ELISA. Conidial germination of Botrytis cinerea was significantly reduced on cotyledonous leaves of L-form-treated plants compared with controls. CONCLUSIONS: Symbiosis of B. subtilis L-form bacteria during seed germination of Chinese cabbage inhibits conidial germination in plants on subsequent exposure to Botrytis cinerea. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first account of plant symbiosis with L-form bacteria showing antagonism to a fungal plant pathogen. This has promising implications for the use of this L-form as a biocontrol agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号