首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectivesNivalenol (NIV) is a secondary metabolite of type B trichothecene mycotoxin produced by Fusarium genera, which is widely found in contaminated food and crops such as corn, wheat and peanuts. NIV is reported to have hepatotoxicity, immunotoxicity, genotoxicity, and reproductive toxicity. Previous studies indicate that NIV disturbs mammalian oocyte maturation. Here, we reported that delayed cell cycle progression might be the reason for oocyte maturation defect caused by NIV exposure.Methods and ResultsWe set up a NIV exposure model and showed that NIV did not affect G2/M transition for meiosis resumption, but disrupted the polar body extrusion of oocytes. Further analysis revealed that oocytes were arrested at metaphase I, which might be due to the lower expression of Cyclin B1 after NIV exposure. After cold treatment, the microtubules were disassembled in the NIV‐exposed oocytes, indicating that NIV disrupted microtubule stability. Moreover, NIV affected the attachment between kinetochore and microtubules, which further induced the activation of MAD2/BUBR1 at the kinetochores, suggesting that spindle assemble checkpoint (SAC) was continuously activated during oocyte meiotic maturation.ConclusionsTaken together, our study demonstrated that exposure to NIV affected Cyclin B1 expression and activated microtubule stability‐dependent SAC to ultimately disturb cell cycle progression in mouse oocyte meiosis.

The image showed that NIV exposure caused the microtubule instability, which disrupted the kinetochore‐microtubule attachment, and further activated spindle assembly checkpoint in mouse oocytes. Green, α‐tubulin; Blue, DNA.

Abbreviations

GVBD
germinal vesicle breakdown
K‐MT
kinetochore microtubule attachment
MI
metaphase I
MII
metaphase II
NIV
Nivalenol
PB1
first polar body
  相似文献   

2.
Paeonia is a well‐known species of ornamental plants, traditional Chinese medicines, and emerging oilseed crops. Apart from nutritional unsaturated fatty acids, the seeds of peonies are rich in stilbenes characterized by their wide‐ranging health‐promoting properties. Although the typical stilbene resveratrol has been widely reported for its multiple bioactivities, it remains uncertain whether the trimer of resveratrol trans‐gnetin H has properties that regulate cancer cell viability, let alone the underlying mechanism. Autophagy regulated by trans‐gnetin H was detected by western blotting, immunofluorescence, and quantitative real‐time PCR. The effects of trans‐gnetin H on apoptosis and proliferation were examined by flow cytometry, colony formation and Cell Counting Kit‐8 assays. Transgnetin H significantly inhibits cancer cell viability through autophagy by suppressing the phosphorylation of TFEB and promoting its nuclear transport. Mechanistically, trans‐gnetin H inhibits the activation and lysosome translocation of mTORC1 by inhibiting the activation of AMPK, indicating that AMPK is a checkpoint for mTORC1 inactivation induced by trans‐gnetin H. Moreover, the binding of TSC2 to Rheb was markedly increased in response to trans‐gnetin H stimulation. Similarly, trans‐gnetin H inhibited the interaction between Raptor and RagC in an AMPK‐dependent manner. More importantly, trans‐gnetin H‐mediated autophagy highly depends on the AMPK‐mTORC1 axis. We propose a regulatory mechanism by which trans‐gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.

  • Proposed a mechanism by which trans‐gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.
  相似文献   

3.
Hydrogen‐deuterium exchange mass spectrometry (HDX‐MS) is a powerful tool that monitors protein dynamics in solution. However, the reversible nature of HDX labels has largely limited the application to in vitro systems. Here, we describe a protocol for measuring HDX‐MS in living Escherichia coli cells applied to BtuB, a TonB‐dependent transporter found in outer membranes (OMs). BtuB is a convenient and biologically interesting system for testing in vivo HDX‐MS due to its controllable HDX behavior and large structural rearrangements that occur during the B12 transport cycle. Our previous HDX‐MS study in native OMs provided evidence for B12 binding and breaking of a salt bridge termed the Ionic Lock, an event that leads to the unfolding of the amino terminus. Although purified OMs provide a more native‐like environment than reconstituted systems, disruption of the cell envelope during lysis perturbs the linkage between BtuB and the TonB complex that drives B12 transport. The in vivo HDX response of BtuB''s plug domain (BtuBp) to B12 binding corroborates our previous in vitro findings that B12 alone is sufficient to break the Ionic Lock. In addition, we still find no evidence of B12 binding‐induced unfolding in other regions of BtuBp that could enable B12 passage. Our protocol was successful in reporting on the HDX of several endogenous E. coli proteins measured in the same measurement. Our success in performing HDX in live cells opens the possibility for future HDX‐MS studies in a native cellular environment.IMPORTANCEWe present a protocol for performing in vivo HDX‐MS, focusing on BtuB, a protein whose native membrane environment is believed to be mechanistically important for B12 transport. The in vivo HDX‐MS data corroborate the conclusions from our previous in vitro HDX‐MS study of the allostery initiated by B12 binding. Our success with BtuB and other proteins opens the possibility for performing additional HDX‐MS studies in a native cellular environment.  相似文献   

4.

Background

Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC), which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure.

Methods/Findings

To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118–310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118–310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118–310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118–310 treated mice were unable to seed the growth of secondary tumors after transplant.

Conclusions

These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.  相似文献   

5.
  1. Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.
  2. Land‐use/land‐cover changes highlight that connectivity among populations will depend upon an individual''s ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.
  3. We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard''s cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single‐habitat types and at habitat edges.
  4. Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species‐specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.
  5. Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.
  相似文献   

6.
Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine‐specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1‐containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV‐delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1‐depleted sEVs do not. Taken together, we demonstrate that LSD1‐loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.  相似文献   

7.
  1. Interacting species are experiencing disruptions in the relative timing of their key life‐history events due to climate change. These shifts can sometimes be detrimental to the fitness of the consumer in trophic interactions but not always.
  2. The potential consequences of phenological asynchrony for the monarch butterfly (Danaus plexippus) and its host plant (Asclepias spp.) have not been well‐studied. Given that plants generally undergo seasonal declines in quality, if climate change delays the timing of the larval stage relative to the availability of younger milkweed plants, monarch performance could be negatively affected.
  3. Here, we explore the potential consequences for the eastern monarch population due to probable asynchrony with milkweed. We used field surveys around Ottawa, Canada, to determine monarch oviposition preference on common milkweed (Asclepias syriaca) plants and the seasonal availability of these plants. To determine the potential fitness consequences when females oviposit on nonpreferred plants, we conducted a field experiment to assess the effect of milkweed size on monarch larval performance (e.g., development time and final size).
  4. Preferred oviposition plants (earlier stages of development and better condition) were consistently available in large proportion over the summer season. We also found that declines in leaf quality (more latex and thicker leaves) with plant size did not translate into decreases in larval performance.
  5. Our results suggest that even if asynchrony of the monarch–milkweed interaction occurs due to climate change, the larval stage of the eastern monarch may not face negative consequences. Future studies should determine how the relative timing of the interaction will change in the region.
  相似文献   

8.
Highlights? Identifying NPAC as a novel LSD2 cofactor stimulating H3K4 demethylation ? Structure determination of LSD2 alone or in complex with NPAC and histone H3 peptide ? Defining the key NPAC residues essential for its intrinsic LSD2 cofactor activity ? Establishing a molecular model for how a cofactor regulates histone demethylation  相似文献   

9.
10.
11.
12.
13.
14.
ObjectivesThis study investigated the specific molecular mechanism and the roles of extracellular matrix protein Spondin 1 (SPON1) in the development of pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsThe expression pattern and clinical relevance of SPON1 was determined in GEO, Ren Ji and TCGA datasets, further validated by immunohistochemical staining and Kaplan‐Meier analysis. Loss and gain of function experiments were employed to investigate the cellular function of SPON1 in vitro. Gene set enrichment analysis, luciferase assay, immunofluorescence and Western blot and immunoprecipitation were applied to reveal the underlying molecular mechanisms. Subcutaneous xenograft model was used to test the role of SPON1 in tumour growth and maintenance in vivo.ResultsSPON1 is significantly upregulated in PDAC tumour tissues and correlated with progression of PDAC. Loss and gain of function experiments showed that SPON1 promotes the growth and colony formation ability of pancreatic cancer cells. Combining bioinformatics assays and experimental signalling evidences, we found that SPON1 can enhance the IL‐6/JAK/STAT3 signalling. Mechanistically, SPON1 exerts its oncogenic roles in pancreatic cancer by maintaining IL‐6R trans‐signalling through stabilizing the interaction of soluble IL‐6R (sIL‐6R) and glycoprotein‐130 (gp130) in PDAC cells. Furthermore, SPON1 depletion greatly reduced the tumour burden, exerted positive effect with gemcitabine, prolonging PDAC mice overall survival.ConclusionsOur data indicate that SPON1 expression is dramatically increased in PDAC and that SPON1 promotes tumorigenicity by activating the sIL‐6R/gp130/STAT3 axis. Collectively, our current work suggests SPON1 may be a potential therapy target for PDAC patient.

Extracellular matrix protein spondin 1 is significantly upregulated in PDAC tumour cell, which exerts its oncogenic roles in pancreatic cancer by maintaining IL6R trans‐signalling through stabilizing the interaction of sIL6R and GP130 in PDAC cell, resulting in STAT3 signalling activating and tumour cell growth.  相似文献   

15.
ObjectivesMutant C/EBPα p30 (mp30), the product of C/EBPα double mutations (DM), lacks transactivation domain 1 and has C‐terminal loss‐of‐function mutation. Acute myeloid leukaemia (AML) patients harbouring C/EBPα DM could be classified as a distinct subgroup with favourable prognosis. However, the underlying mechanism remains elusive.Materials and MethodsAutophagy regulated by mp30 was detected by western blot and immunofluorescence. Immune infiltration analysis and GSEA were performed to investigate autophagic and inflammatory status of AML patients from the GSE14468 cohort. Flow cytometry was applied to analyse T cell activation.ResultsMp30 inhibited autophagy by suppressing nucleus translocation of NF‐κB. Autophagy‐associated secretion of IL‐1β was decreased in mp30‐overexpressed AML cells. Bioinformatic analysis revealed that inflammatory status was attenuated, while CD8+ T cell infiltration was upregulated in C/EBPα DM AML patients. Consistently, the proportion of CD8+CD69+ T cells in peripheral blood mononuclear cells (PBMCs) was upregulated after co‐culture with mp30 AML cell conditional culture medium. Knock‐out of IL‐1β in AML cells also enhanced CD8+ T cell activation. Accordingly, IL‐1β expression was significantly reduced in the bone marrow (BM) cells of C/EBPα DM AML patients compared to the wildtype, while the CD8+CD69+ T cell proportion was specifically elevated.ConclusionsC/EBPα DM alleviates immunosuppression of CD8+ T cells by inhibiting the autophagy‐associated secretion of IL‐1β, which elucidated that repression of autophagy‐related inflammatory response in AML patients might achieve a favourable clinical benefit.

Mp30 suppresses autophagy‐associated IL‐β secretion, which ultimately alleviates the immunosuppression of CD8+ T cells in the microenvironment, contributing to favourable prognosis of AML patients.  相似文献   

16.
ObjectivesThe rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self‐renew and exhibit pluripotency in long‐term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome‐wide screening using a unique rat haploid system.Materials and MethodsRat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1‐GFP reporter are used for genetic screening. Genome‐wide mutations are introduced into the genomes of rat Rex1‐GFP haESCs via piggyBac transposon, and differentiation‐retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high‐throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p‐ERK1/2) is determined by western blotting.ResultsHigh‐throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p‐ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency.ConclusionsOur findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self‐renewal or pluripotency of rat ESCs.

Differentiation of pluripotent rat embryonic stem cells (ESCs) in vitro is difficult to achieve for unknown mechanisms. Rat haploid ESCs (haESCs) have been validated as a powerful tool to target unknown functional genes and pathways based on homozygous genetic screening. Xu et al. utilized Rex1‐GFP labelled‐rat haESCs to conduct genome‐scale screening of genes modulating pluripotency exiting. Validation experiments showed that Thop1 (one of the screened out genes) played very important roles in the random differentiation of rat ESCs in vitro via modulating phosphorylation of ERK.  相似文献   

17.
18.
While the promise of bromodomains and extraterminal (BET) protein inhibitors (BETis) is emerging in breast cancer (BC) therapy, resistance in these cells to BETis conspicuously curbs their therapeutic potential. FBW7 is an important tumour suppressor. However, the role of FBW7 in BC is not clear. In the current study, our data indicated that the low expression of FBW7 contributes to the drug resistance of BC cells upon JQ1 treatment. shRNA‐mediated FBW7 silencing in FBW7 WT BC cells suppressed JQ1‐induced apoptosis. Mechanistically, it was revealed that this diminished FBW7 level leads to Mcl‐1 stabilization, while Mcl‐1 upregulation abrogates the killing effect of JQ1. Mcl‐1 knockdown or inhibition resensitized the BC cells to JQ1‐induced apoptosis. Moreover, FBW7 knockdown in MCF7 xenografted tumours demonstrated resistance to JQ1 treatment. The combination of JQ1 with a Mcl‐1 inhibitor (S63845) resensitized the FBW7 knockdown tumours to JQ1 treatment in vivo. Our study paves the way for a novel therapeutic potential of BETis with Mcl‐1 inhibitors for BC patients with a low FBW7 expression.  相似文献   

19.
ObjectivesBone tissue engineering based on adipose‐derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON‐ASCs), osteogenic potential of DOP‐ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP‐ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects.Materials and methodsAn animal model of DOP was established in mice. CON‐ASCs and DOP‐ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON‐ASCs and DOP‐ASCs in vitro. Lentiviruses that carried shRNA‐AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON‐ASCs and DOP‐ASCs in vivo. Hematoxylin and eosin (H&E), Masson''s, alizarin red, and alkaline phosphatase (ALP) staining, micro‐computed tomography (Micro‐CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite‐specific PCR (BSP) were used to analyze the functional changes of ASCs.ResultsThe DOP mouse model was established successfully. Compared with CON‐ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP‐ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON‐ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP‐ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo.ConclusionsLncRNA‐AK137033 inhibits the osteogenic potential of DOP‐ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号