首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, have been isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline 1-oxide (4NQO), and Q31 cells are cross-sensitive to UV and 4NQO. Lines resistant to 6-thioguanine (TGr) and 5-bromo-2'-deoxyuridine (BUr) were isolated from L5178Y and these three mutagen -sensitive mutants. All the TGr lines were sensitive to 5-bromo-2'-deoxyuridine and HAT medium and all the BUr lines were sensitive to 6-thioguanine and HAT medium. The hybrids homozygous for the mutagen-sensitive markers showed nearly the same sensitivity to UV, 4NQO, X-rays and MMS as their parental TGr and BUr lines. The hybrids constructed by fusing L5178Y BUr and TGr lines from each of MS-1, M10 and Q31 displayed the normal UV, X-ray and MMS resistancy of L5178Y cells. Thus the UV-, X-ray- and MMS-sensitive markers in MS-1, M10 and Q31 were recessive in somatic cell hybrids. The 4NQO-sensitive phenotype, however, behaved codominantly in somatic cell hybrids.  相似文献   

2.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, were isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline-1-oxide (4NQO); and Q31 cells are cross-sensitive to UV and 4NQO. MMS-, X-ray- and UV-sensitive markers in these mutants behaved recessively in hybrids between pairs of these mutants as in hybrids between L5178Y and these mutants as reported before (Shiomi et al., 1982b). Complementation analyses were carried out by forming hybrids between two MMS-sensitive mutants (MS-1 and M10) and between two 4NQO-sensitive mutants (M10 and Q31). MMS and 4NQO survivals were measured in these hybrid cells. MS-1 and M10 were found to belong to different complementation groups for MMS-sensitive phenotypes. The hybrid clones between M10 and Q31 were as sensitive to 4NQO as each of the mutants, indicating codominance of 4NQO sensitivity in these mutants. The hybrids constructed with L5178Y and three mutants were stable as to their chromosome constitution for 100 days of cultivation without selective pressure. From the segregation studies on these hybrids, it is concluded that neither the X-ray-sensitive mutation in M10 nor the UV-sensitive mutation in Q31 is located on the X chromosome.  相似文献   

3.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

4.
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).  相似文献   

5.
A mouse-cell mutant sensitive to methyl methanesulfonate (MMS), X-rays, ultraviolet light (UV), and crosslinking agents was selected using the replica plating and cell suspension spotting methods. This mutant (XUM1) is a mitomycin C-sensitive derivative of previously reported XU1, a mutant sensitive to MMS, X-rays and UV. Since XU1 is highly susceptible to the lethal effect of 4-nitroquinoline-1-oxide (4NQO), XUM1 is also hypersensitive to 4NQO. Growth inhibition area tests showed that low concentrations of mutagens were detected with the multiple mutagen-sensitive mutant XUM1. Hence XUM1 cells will be useful in detecting with high sensitivity a wide range of mutagens and carcinogens which mimic X-rays, UV and crosslinking agents.  相似文献   

6.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

7.
The alkylating agent MMS was toxic to mouse lymphoma L5178Y cells and decreased their growth rate. A dose-dependent induction of thioguanine- and thymidine- but not ouabain-resistant variants was observed. The prolonged period for expression of thioguanine-resistant variants observed with other mutagens was also found in these studies. A comparison of MMS and EMS showed that MMS on a molar basis was approximately 10 times more toxic than EMS. With mutation, however, when evaluated at equal levels of cell killing MMS and EMS induced the same number of thymidine-resistant variants. For thioguanine-resistant variants MMS was approximately 10-fold less efficient than EMS, while for ouabain-resistance MMS, unlike EMBS, produced no variants at all. The ouabain results were further compared with positive results obtained using a modified Luria--Delbrück fluctuation test.  相似文献   

8.
The X-ray-sensitive mutant M10 and the UV-sensitive mutant Q31 of mouse lymphoma L5178Y cells are both sensitive to killing by 4-nitroquinoline-1-oxide (4NQO). Since cell hybridization experiments showed that the 4NQO sensitivities in M10 and Q31 cells behaved as codominant traits (Shiomi et al., 1982c), it is not possible to determine by complementation test whether the M10 and the Q31 mutations responsible for 4NQO sensitivities are allelic. We have obviated this difficulty by selecting double mutants that are sensitive to both X-rays and UV. From X-ray-sensitive M10 cells, two UV-sensitive mutants (XU 1 and XU 2) were isolated by a cell-suspension spotting method. XU 1 and XU 2 were found to belong to the same complementation group as Q31 (group I). Double mutants XU 1 and XU 2 were 30-37-fold more sensitive to 4NQO than parental L5178Y cells, whereas the single mutants M10 and Q31 were only 6-8-fold more sensitive to 4NQO than L5178Y cells in terms of D10 values (dose required to reduce survival to 10%). These results show that the M10-Q31-double mutations enhance 4NQO sensitivity synergistically, indicating that the M10 and the Q31 mutations relevant to 4NQO sensitivities are non-allelic. The implications of this finding are discussed.  相似文献   

9.
Human peripheral blood lymphocytes stimulated in vitro for 6 hr were exposed to a low (conditioning) dose of ethyl methanesulfonate (EMS; 1.5 x 10(-4) M) or methyl methanesulfonate (MMS; 1.5 x 10(-5) M). After 6 hr, the cells were treated with a high (challenging) concentration of the same agent (1.5 x 10(-3) M EMS or 1.5 x 10(-4) M MMS). The cells that received both conditioning and challenging doses became less sensitive to the induction of sister chromatid exchanges (SCEs) than those which did not receive the pretreatment with EMS or MMS. They responded with lower frequencies of SCEs. This suggests that conditioning dose of EMS or MMS has offered the lymphocytes to have decreased SCEs. This led to the realization that pre-exposure of lymphocytes to low dose can cause the induction of repair activity. This is a clear indication of the existence of adaptive response induced by alkylating agents whether it is ethylating or methylating in human lymphocytes in vitro.  相似文献   

10.
The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P>0.05). There were significant difference of DNA damage indexes between MMC group and RFR+MMC co-exposure group at 0 and 21 h incubation after treatment (P<0.01). Also the significant difference of DNA damage indexes between 4NQO group and RFR+4NQO co-exposure group at 0 and 21 h incubation after treatment was observed (P<0.05 or P<0.01). The DNA damage in RFR+BLM co-exposure groups and RFR+MMS co-exposure groups was not significantly increased, as compared with corresponding BLM and MMS groups (P>0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious.  相似文献   

11.
26 mutants with increased sensitivity to the lethal effects of mitomycin C (MMC) were isolated from mouse lymphoma L5178Y cells by a replica-plating technique. Most of them were about 5-10 times more sensitive in terms of D37 values to MMC than were parental cells. 5 of the MMC-sensitive mutants isolated from independently mutagenized cell populations were further analyzed. They were highly sensitive to the killing by decarbamoyl (DC) MMC, a monofunctional derivative of MMC, but were not sensitive to ultraviolet radiation, X-rays, 4-nitroquinoline-1-oxide or methyl methanesulfonate. These 5 mutants were classified into at least 2 genetic complementation groups. The implication of these mutations in cross-link and mono-adduct repair of DNA damage induced by MMC and DCMMC is discussed.  相似文献   

12.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

13.
Mutagenic and error-free DNA repair in Streptomyces   总被引:2,自引:0,他引:2  
Summary Two mutants of Streptomyces fradiae defective in DNA repair have been characterized for their responses to the mutagenic and lethal effects of several chemical mutagens and ultraviolet (UV) light. S. fradiae JS2 (mcr-2) was more sensitive than wild type to agents which produce bulky lesions resulting in large distortions of the double helix [i.e. UV-light, 4-nitroquinoline-1-oxide (NQO), and mitomycin C (MC)] but not to agents which produce small lesions [i.e. hydroxylamine (HA), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG)]. JS2 expressed a much higher frequency of mutagenesis induced by UV-light at low doses and thus appeared to be defective in an error-free excision repair pathway for bulky lesions analogous to the uvr ABC pathway of Escherichia coli. S. fradiae JS4 (mcr-4) was defective in repair of damage by most agents which produce small or bulky lesions (i.e., HA, NQO, MMS, MNNG, MC, and UV, but not EMS). JS4 was slightly hypermutable by EMS and MMS but showed reduced mutagenesis by NQO and HA. This unusual phenotype suggests that the mcr-4 + protein plays some role in error-prone repair in S. fradiae.  相似文献   

14.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

15.
A replica-plating technique has been adopted for the isolation of mutagen-sensitive mutants of Chinese hamster V79 and CHO cell lines. After the mutagenic treatment (ENU) clones derived from these cell lines were replica plated into micro wells and replicas were treated with UV (254 nm), X-ray, MMC, EMC or MMS. Clonal cell lines which demonstrated mutagen sensitivity were retested by the determination of survival. Only one UV-sensitive line was obtained in 1500 clonal lines derived from CHO cells. This mutant appeared also sensitive to 4NQO and MMC. The sensitivity to UV and MMC was 2-3-fold enhanced, while the increase in sensitivity to 4NQO was 4-5-fold. In V79 cells 9 mutagen-sensitive lines were found after screening of 500 clonal lines; six of them showed increased sensitivity towards UV, two towards MMC, and one cell line was found to be X-ray sensitive. A considerable cross-sensitivity for the various agents was found among the isolated mutants. When a 2-fold increase is taken as a minimum to indicate mutagen sensitivity 6 mutants were sensitive to UV, 8 mutants were sensitive to MMC, 6 mutants were sensitive to 4NQO and 4 mutants were sensitive to X-rays. The difference in sensitivity to UV versus 4NQO makes it unlikely that 4NQO can be considered as a UV-mimetic agent. The sensitivity to MMC appears to fall into 2 classes: a class with moderate sensitivity (2-8-fold) and a class with high sensitivity (30-100-fold). The presence of similar classes is indicated for UV. Except for the two lines V-E5, V-B7 and the two lines V-H11, V-H4 all obtained mutants have a different spectrum of mutagen sensitivities which suggests that different genetic alterations underly these effects. The observed high frequency of mutagen-sensitive mutants in V79 cells, although unexpected and substantially higher than those published for CHO cells and L5178Y cells, can still be explained by the presence of functionally hemizygous loci.  相似文献   

16.
It is known that UV, X-rays, MMC and MMS are not mutagenic for H. influenzae, whereas HZ, EMS and MNNG are potent mutagens for this bacterium. All of these agents, however, are known to be both mutagenic and able to induce prophage in E. coli. We report here that all the agents except HZ induce prophage in H. influenzae, and EMS even induces in the recombination-defective recl mutant, which is non-inducible by UV, MMC, MNNG and MMS. MMS did not cause single-strand breaks or gaps in DNA synthesized after treatment of H. influenzae, but EMS and MNNG produced them. EMS caused more breaks in DNA synthesized before treatment than in that synthesized after treatment. On the other hand we did observe such breaks or gaps induced in E. coli in DNA synthesized posttreatment by EMS as well as by MMS and MNNG, at comparable survival levels.  相似文献   

17.
2 mutant mouse cells M10 and Q31 were examined for chromosomal aberrations induced by ultraviolet radiation (UV) and 4-nitroquinoline-1-oxide (4NQO), as compared with mouse lymphoma L5178Y cells. Q31 cells are UV- and 4NQO-sensitive cells isolated from L5178Y cells. M10 cells are similar but are sensitive to ionizing radiation and 4NQO. After treatment with UV or 4NQO, chromatid-type aberrations in these cell strains were induced more frequently in the first mitotic cells, at late fixation times. After UV exposure (2.4 J/m2), the maximal frequencies of chromatid-type breaks in Q31 cells were about 5 times higher than in L5178Y cells. In M10 cells such breaks were only as frequent as in L5178Y cells. After 4NQO treatment (50 ng/ml) the frequencies of chromatid-type breaks in M10 and Q31 cells were significantly higher than in L5178Y cells. From these results and those of previous studies (Takahashi et al., 1982), M10 cells may be considered hypersensitive to gamma-rays and 4NQO, but not to UV, and thus react similarly to L5178Y cells. The hypersensitivity of M10 cells to 4NQO may result from a defect in the ionizing-radiation repair mechanism as has been suggested to occur in ataxia telangiectasia (AT) cells. Q31 cells are hypersensitive to UV and 4NQO, but not to gamma-rays. Q31 cells may be considered to be deficient in a UV-like repair pathway. In conclusion, characteristics of murine M10 and Q31 cells are compared with those of human AT and xeroderma pigmentosum (XP) cells.  相似文献   

18.
Summary Excision repair was studied in normal human and ataxia telangiectasia (AT) cells proficient in repair of UV and its mimetic chemicals, and in xeroderma pigmentosum group C (XP C) cells (deficient in repair of UV and its mimetics), after treatment with several combinations of chemical carcinogens, by the photolysis of bromodeoxyuridine incorporated into parental DNA during repair. Results indicate that repair was additive in AT, and XP C cells treated with N-acetoxy-2-acetylaminofluorene (AAAF) plus ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) indicating that there are different rate limiting steps for removal of both types of damage. Data on the combinations of 4-nitroquinoline 1-oxide (4NQO) plus MMS or EMS are difficult to interpret, but they do not indicate inhibition of DNA repair.Research carried out under the auspices of the U.S. Dept. of Energy  相似文献   

19.
T M Koval 《Mutation research》1991,262(4):219-225
Radioresistant TN-368 lepidopteran insect cells were examined with respect to their sensitivity to the chemical agents methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), propane sultone (PS), mitomycin C (MMC), and 4-nitroquinoline 1-oxide (4NQO). Based on survival ability, the TN-368 cells were more resistant than most mammalian cells to each of these agents. Concentrations of these agents which reduce survival to about 10% were used to assess recovery ability assayed by colony formation in liquid-holding and split-dose experiments. Liquid-holding experiments were performed by exposing cells in the plateau phase of growth for 1 h to 8 mM MMS, 50 microM MNNG, 9 mM PS, 110 microM MMC, or 175 microM 4NQO, removing the drug and incubating cells in spent medium for 6 h, and plating for colony formation. Split-dose experiments were performed by exposing exponentially growing cells to the above drug concentrations for 1 h, incubating in fresh medium for 6 h, exposing the cells to the agent for an additional hour, and plating. The TN-368 cells were able to significantly recover from MMS, MNNG and PS in both types of experiment. Recovery from 4NQO was observed in liquid-holding experiments and not assessed in split-dose experiments. In all cases where recovery was observed, survival enhancement was approximately 2-fold. Recovery from MMC (a cross-linking agent) exposure was not observed in either type of experiment. In addition, recovery from 8-methoxypsoralen plus UVA light (PUVA), another cross-linking treatment, was not observed. These studies indicate that DNA-DNA and/or DNA-protein crosslinking may be important molecular lesions causing death in the lepidopteran cells and that these cells may have some difficulty in repairing such damage.  相似文献   

20.
The present study was carried out in order to analyze how persistent the lesions in DNA are which elicit sister-chromatid exchanges (SCEs), induced by three different chemical agents, mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) and ethyl methanesulfonate (EMS), in proliferating human lymphocytes. Cells were exposed to the mutagens for 1 h just before starting bromodeoxyuridine substitution and SCEs were examined in third-cycle metaphases showing three-way-differential staining, by means of our previously standardized method. The results show that, in spite of the fact that these three compounds have different modes of action, the lesions induced by all of them seem to be capable of persisting in DNA and eliciting SCEs for at least three successive cell cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号