首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.  相似文献   

2.
3.
Telomeric repeat-containing RNA (TERRA) is a type of long non-coding RNA transcribed from telomeres, and it forms R-loops by invasion into telomeric DNA. Since either an excessive or inadequate number of R-loops leads to telomere instability, the TERRA levels need to be delicately modulated. In this study, we found that m6A modification presents on the subtelomeric regions of TERRA and stabilizes it, and the loss of METTL3 impacts telomere stability. Mechanically, the m6A modification on TERRA is catalyzed by METTL3, recognized and stabilized by the m6A reader YTHDC1. Knockdown of either METTL3 or YTHDC1 enhances TERRA degradation. The m6A-modified TERRA forms R-loops and promotes homologous recombination which is essential for the alternative lengthening of telomeres (ALT) pathway in cancer cells. METTL3 depletion leads to R-loop reduction, telomere shortening and instability. Altogether, these findings reveal that METTL3 protects telomeres by catalyzing m6A modification on TERRA, indicating that inhibition or deletion of METTL3 is potentially a new avenue for ALT cancer therapy.  相似文献   

4.
5.
The A-repeat region of the lncRNA Xist is critical for X inactivation and harbors several N6-methyladenosine (m6A) modifications. How the m6A modification affects the conformation of the conserved AUCG tetraloop hairpin of the A-repeats and how it can be recognized by the YTHDC1 reader protein is unknown. Here, we report the NMR solution structure of the (m6A)UCG hairpin, which reveals that the m6A base extends 5′ stacking of the A-form helical stem, resembling the unmethylated AUCG tetraloop. A crystal structure of YTHDC1 bound to the (m6A)UCG tetraloop shows that the (m6A)UC nucleotides are recognized by the YTH domain of YTHDC1 in a single-stranded conformation. The m6A base inserts into the aromatic cage and the U and C bases interact with a flanking charged surface region, resembling the recognition of single-stranded m6A RNA ligands. Notably, NMR and fluorescence quenching experiments show that the binding requires local unfolding of the upper stem region of the (m6A)UCG hairpin. Our data show that m6A can be readily accommodated in hairpin loop regions, but recognition by YTH readers requires local unfolding of flanking stem regions. This suggests how m6A modifications may regulate lncRNA function by modulating RNA structure.  相似文献   

6.
7.
8.
9.
10.
SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRASG12V) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.  相似文献   

11.
Prostate cancer (PCa) is the most common malignant tumor and the second leading cause of cancer-related mortality in men worldwide. Despite significant advances in PCa therapy, the underlying molecular mechanisms have yet to be fully elucidated. Recently, epigenetic modification has emerged as a key player in tumor progression, and RNA-based N6-methyladenosine (m6A) epigenetic modification was found to be crucial. This review summarizes comprehensive state-of-art mechanisms underlying m6A modification, its implication in the pathogenesis, and advancement of PCa in protein-coding and non-coding RNA contexts, its relevance to PCa immunotherapy, and the ongoing clinical trials for PCa treatment. This review presents potential m6A-based targets and paves a new avenue for diagnosing and treating PCa, providing new guidelines for future related research through a systematic review of previous results.  相似文献   

12.
N6-Methyladenosine (m6A) is the most abundant internal modification in RNA and is specifically recognized by YT521-B homology (YTH) domain-containing proteins. Recently we reported that YTHDC1 prefers guanosine and disfavors adenosine at the position preceding the m6A nucleotide in RNA and preferentially binds to the GG(m6A)C sequence. Now we systematically characterized the binding affinities of the YTH domains of three other human proteins and yeast YTH domain protein Pho92 and determined the crystal structures of the YTH domains of human YTHDF1 and yeast Pho92 in complex with a 5-mer m6A RNA, respectively. Our binding and structural data revealed that the YTH domain used a conserved aromatic cage to recognize m6A. Nevertheless, none of these YTH domains, except YTHDC1, display sequence selectivity at the position preceding the m6A modification. Structural comparison of these different YTH domains revealed that among those, only YTHDC1 harbors a distinctly selective binding pocket for the nucleotide preceding the m6A nucleotide.  相似文献   

13.
Prostate cancer is the most commonly diagnosed form of cancer and the second leading cancer-related death among men in the Western civilization. Since no effective therapy exists for this tumor after progression beyond resectable boundaries, there is an urgent need for new treatment strategies. Prostate specific membrane antigen (PSMA) represents an excellent target on prostate cancer cells, and therefore specific immunotherapy may be a novel therapeutic option for the management of this tumor. We constructed a fully recombinant immunotoxin (A5-PE40) from a single-chain antibody fragment (scFv) against cell-adherent PSMA and a truncated form of Pseudomonas exotoxin A (PE40) lacking its natural binding domain Ia. The scFv A5 was obtained from a mAb elicited with native PSMA by phage display technology and direct selection on cells carrying the antigen. The bacterially expressed and purified immunotoxin A5-PE40 specifically binds to PSMA-positive prostate cancer cells and induces a 50% reduction of viability (IC50) at a concentration of 20 pM, while PSMA-negative cells remain unaffected. Due to its high and specific toxicity this recombinant immunotoxin is a promising candidate for therapeutic applications in patients with prostate cancer.  相似文献   

14.
Achieving and maintaining effective suppression of serum testosterone levels in men treated with androgen ablation is one of the essential strategies in the management of prostate cancer. Historically, a serum testosterone below 50 ng/dL was considered to be the castrate level. Current data suggest that the new target for either surgical or chemical castration is a serum testosterone level of lower than 20 ng/dL in an attempt to maximize therapeutic outcomes. Testosterone breakthrough and the acute-on-chronic effects of administration of a luteinizing hormone-releasing hormone analogue may cause testosterone levels to periodically rise, sometimes to noncastrate levels. The goal of androgen ablation is to identify those agents that will most consistently achieve and maintain the lowest testosterone levels possible.Key words: Prostate cancer, Androgen ablation, LHRH analogues, LHRH antagonists, TestosteroneThe cornerstone of understanding the basic biology of prostate cancer relies upon the important discovery that prostate cancer is a hormonally responsive tumor. The current use of androgen ablation therapy in prostate cancer includes treatment based on serum prostate-specific antigen (PSA) only or local recurrence; neoadjuvant or adjuvant treatment of high-risk disease, usually in combination with radiation therapy; and treatment of patients with metastatic disease regardless of symptoms. The American Society of Clinical Oncology (ASCO) 2007 guidelines and National Comprehensive Cancer Network (NCCN) 2009 guidelines recommend either luteinizing hormone-releasing hormone (LHRH) agonists or bilateral orchiectomy as first-line therapy for men with advanced prostate cancer.1,2Medical or chemical castration is almost exclusively performed by the use of injectable LHRH analogues, with a minor role for estrogen and limited experience with LHRH antagonists. Surgical castration through bilateral orchiectomy is infrequently used today.Intermittent hormonal therapy (IHT) is being investigated as an alternative to continuous hormonal therapy with a potential for reduced morbidity and a delay of the progression to hormone-refractory disease.3 Although intermittent therapy may rely upon restoring a normal testosterone level, it is believed that the testosterone level should be as low as possible when the patient is on treatment, thus generating the lowest serum PSA level possible and likely improving outcome.4 Although the data on IHT are promising, trials reported thus far are relatively small and somewhat underpowered, and it is likely that its use will increase in the future as trials mature.There is growing recognition that many men may not achieve acceptable levels of testosterone using androgen ablation. This has led to a renewed interest in the significance of the testosterone level in the modern era of prostate cancer management. Can we define the best castration therapy for prostate cancer? Is this the therapy that provides the lowest and most consistent levels of testosterone suppression? To quote Dr. Claude Schulman in a recent editorial: “less is more.”5  相似文献   

15.
16.
17.
The advent of prostate-specific antigen (PSA) testing in the early 1980s revolutionized the diagnosis of prostate cancer. As a result of PSA testing, there has been a surge in the number of prostate cancer diagnoses. This review examines the results of 2 recent landmark trials that studied the effect of screening on prostate cancer mortality: the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the US-based Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.Key words: PSA screening, European Randomized Study of Screening for Prostate Cancer (ERSPC), Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening TrialProstate cancer poses a significant problem for men’s health; it has become the most common malignancy and the second most common cause of cancer death in American men. It is estimated that 1 in 6 men will be diagnosed with prostate cancer at some time in their lives, and more than 30,000 men died of the disease in 2002.1 The advent of prostate-specific antigen (PSA) testing in the early 1980s revolutionized the diagnosis of prostate cancer, and, as a result, there has been a surge in the number of prostate cancer diagnoses.Similar to other common malignancies, such as breast and cervical cancer, population screening with this effective tumor marker appears enticing, and the American health care model has advocated PSA screening since the early 1990s. This review examines the results of 2 recent landmark trials: the European Randomized Study of Screening for Prostate Cancer (ERSPC)1 and the US-based Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.2 The results of these trials have contributed significantly to our understanding of the effects and efficacy of prostate cancer screening, and its difficulties. Both trials examined mortality as the endpoint, and both found little effect on mortality from screening.  相似文献   

18.
Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress‐inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature‐dependent Ser/Arg‐rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA‐binding proteins revealed HSATIII association with proteins related to N6‐methyladenosine (m6A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6A‐modified. nSBs sequester the m6A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6A modification of pre‐mRNAs, leading to repression of m6A‐dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature‐dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6A‐modified architectural lncRNAs.  相似文献   

19.
Prostate specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed on prostate epithelial cells and is strongly upregulated in prostate cancer. Radioligand therapy using beta-emitting Lutetium-177 (177Lu)-labeled-PSMA-617, a radiolabeled small molecule, has gained attention as a novel targeted therapy for metastatic prostate cancer, given its high affinity and long tumor retention, and rapid blood pool clearance. In March 2022, the United States Food and Drug administration has granted approval to the targeted 177Lu-PSMA-617 therapy for treatment of patients with PSMA-positive metastatic castration resistant prostate cancer, who have been previously treated with an androgen-receptor pathway inhibitor and taxane-based chemotherapy. Studies have demonstrated the adverse effects of this treatment, mainly encountered due to radiation exposure to non-target tissues. Salivary glands show high PSMA-ligand uptake and receive increased radiation dose secondary to accumulation of 177Lu-PSMA-617. This predisposes the glands to radiation-mediated toxicity. The exact mechanism, scope and severity of radiation-mediated salivary gland toxicity are not well understood, however, the strategies for its prevention and treatment are under evaluation. This review will focus on the current knowledge about salivary gland impairment post 177Lu labeled PSMA-based radioligand therapies, diagnostic methodologies, and imaging with emphasis on salivary gland scintigraphy. The preventive strategies and known treatment options would also be briefly highlighted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号