首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of resistance and heterogeneity in differential response towards tyrosine kinase inhibitors (TKI) in chronic myeloid leukaemia (CML) treatment has led to the exploration of factors independent of the Philadelphia chromosome. Among these are the association of deletions of genes on derivative (der) 9 chromosome with adverse outcomes in CML patients. However, the functional role of genes near the breakpoint on der (9) in CML prognosis and progression remains largely unexplored. Copy number variation and mRNA expression were evaluated for five genes located near the breakpoint on der (9). Our data showed a significant association between microdeletions of the FUBP3 gene and its reduced expression with poor prognostic markers and adverse response outcomes in CML patients. Further investigation using K562 cells showed that the decrease in FUBP3 protein was associated with an increase in proliferation and survival due to activation of the MAPK–ERK pathway. We have established a novel direct interaction of FUBP3 protein and PRC2 complex in the regulation of ERK signalling via PAK1. Our findings demonstrate the role of the FUBP3 gene located on der (9) in poor response and progression in CML with the identification of additional druggable targets such as PAK1 in improving response outcomes in CML patients.  相似文献   

2.
The Philadelphia chromosome is found in more than 90 percent of chronic myeloid leukemia (CML) patients. In most cases, it results from the reciprocal t(9;22)(q34;q11), with the ABL proto-oncogene from 9q34 fused to the breakpoint cluster region (BCR) locus on 22q11. In 5 to 10 percent of patients with CML, the Ph originates from variant translocations, involving various breakpoints in addition to 9q34 and 22q11. Here we report a rare case of a Philadelphia positive CML patient carrying t(5;9)(q13;q34) and deletion of ABL/BCR on der(9) as a separate event.  相似文献   

3.
The breakpoint regions of both translocation products of the (9;22) Philadelphia translocation of CML patient 83-H84 and their normal chromosome 9 and 22 counterparts have been cloned and analysed. Southern blotting with bcr probes and DNA sequencing revealed that the breaks on chromosome 22 occurred 3' of bcr exon b3 and that the 88 nucleotides between the breakpoints in the chromosome 22 bcr region were deleted. Besides this small deletion of chromosome 22 sequences a large deletion of chromosome 9 sequences (greater than 70 kb) was observed. The chromosome 9 sequences remaining on the 9q+ chromosome (9q+ breakpoint) are located at least 100 kb upstream of the v-abl homologous c-abl exons whereas the translocated chromosome 9 sequences (22q-breakpoint) could be mapped 30 kb upstream of these c-abl sequences. The breakpoints were situated in Alu-repetitive sequences either on chromosome 22 or on chromosome 9, strengthening the hypothesis that Alu-repetitive sequences can be hot spots for recombination.  相似文献   

4.
Although chromosome translocations are well-documented recurrent events in hematological malignancies and soft tissue sarcomas, their significance in carcinomas is less clear. We report here the molecular characterization of the reciprocal translocation t(1;15)(p22;q22) in the prostate carcinoma cell line, LNCaP. The chromosome 1 breakpoint was localized to a single BAC clone, RP11-290M5, by sequential FISH analysis of clones selected from the NCBI chromosome 1 map. This was further refined to a 580-bp region by Southern blot analysis. A 2.85-kb fragment spanning the der(1) breakpoint was amplified by long-range inverse PCR. The breakpoint on chromosome 1 was shown to lie between the CYR61 and the DDAH1 genes with the der(1) junctional sequence linking the CYR61 gene to the TSPAN3 (TM4SF8) gene on chromosome 15. Confirmatory PCR and FISH mapping of the der(15) showed loss of chromosome material proximal to the breakpoint on chromosome 15, containing the PSTPIP1 and RCN2 genes. On the available evidence we conclude that this translocation does not result in an in-frame gene fusion. Comparative expressed sequence hybridization (CESH) and comparative genomic hybridization (CGH) analysis, showed relative down-regulation of gene expression surrounding the breakpoint, but no gross change in genomic copy number. Real-time quantitative RT-PCR for genes around the breakpoint supported the CESH data. Therefore, here we may have revealed a gene down-regulation mechanism associated with a chromosome translocation, either through small deletion at the breakpoint or through another means of chromosome domain related gene regulation.  相似文献   

5.
Chromosome evolution is one of the major mechanisms of disease progression and resistance in chronic myeloid leukemia (CML) patients. However, the clinical significance of chromosomal evolution in the Philadelphia (Ph)-negative clone during therapy is not fully understood. We evaluated 94 CML patients in the chronic phase of CML during treatment of the disease. Six of them had Ph-negative chromosome abnormalities during treatment. Four patients with a single abnormality and a good molecular response showed no obvious complications from the chromosomal changes, while two other patients who had complex abnormalities and previous treatment had poor outcomes. Our results highlight the need for close monitoring of this kind of patient, not only on a molecular level but also at the cytogenetic level.  相似文献   

6.
The human immunoglobulin V lambda locus has been studied in relation to chromosomal translocations involving chromosome 22. DNA probes for two V lambda genes which belong to different subgroups and do not cross hybridize, were used to show that both V lambda genes are located on the Philadelphia chromosome in chronic myeloid leukaemia (CML). Both genes map in band 22q11 to a region that is bounded on the distal side by the breakpoints for CML 9:22 translocations and on the proximal side by the breakpoint for an X:22 translocation. We have found no evidence for rearrangements or amplification of either V lambda gene in CML, in either the chronic or acute phases of the disease. In K562 cells which are derived from the pleural effusion of a patient with Ph1-positive CML, there appears to be no rearrangement of the V lambda genes, but they are both amplified about four times. We have estimated that the minimum size for the amplification unit in K562 cells is 186 kb.  相似文献   

7.
C-abl and bcr are rearranged in a Ph1-negative CML patient.   总被引:5,自引:0,他引:5       下载免费PDF全文
Chromosomal analysis of a patient with chronic myelocytic leukemia (CML) revealed a translocation (9;12) (q34;q21) without a detectable Philadelphia chromosome (Ph1). Using molecular approaches we demonstrate (i) a rearrangement within the CML breakpoint cluster region (bcr) on chromosome 22, and (ii) a joint translocation of bcr and c-abl oncogene sequences to the derivative chromosome 12. These observations support the view that sequences residing on both chromosome 9 (c-abl) and 22 (bcr) are involved in the generation of CML and suggest that a subset of Ph1-negative patients may in fact belong to the clinical entity of Ph1-positive CML.  相似文献   

8.
A gene family encompassing a minimum of four genes or pseudogenes for gamma-glutamyl transferase (GGT; EC 2.3.2.2) is present on chromosome 22q11. We have previously isolated a cDNA related to GGT but clearly not belonging to its gene family. The chromosomal location of this related gene, GGTLA1, has been determined by both isotopic and fluorescence in situ hybridization to metaphase cells and by Southern blot analysis of somatic cell hybrid DNAs. We show that GGTLA1 is part of a distinct gene family, which has at least four members (GGTLA1, GGTLA2, GGTLA3, GGTLA4). At least two loci are located on chromosome 22 within band q11 and proximal to the chronic myelogenous leukemia (CML) breakpoint in BCR (breakpoint cluster region gene). At least one other member is located more distally between the breakpoints found in Ewings sarcoma and CML. Some of the GGT and GGTLA family members are located on NotI restriction enzyme fragments of a similar size. Combined results indicate that a segment of human chromosome 22q11 has undergone largescale amplification events relatively recently in evolution.  相似文献   

9.
The hallmark of chronic myelogenous leukemia (CML) is a translocation between chromosomes 9 and 22 - the Philadelphia (Ph') translocation. The translocation is also found in acute lymphocytic leukemia (ALL) albeit in a lower percentage of patients. The breakpoint on chromosome 22 is located within the BCR gene: in CML, breakpoints are clustered within 5.8 kb of DNA, the major breakpoint cluster region (Mbcr). In ALL, breakpoints have been reported within the Mbcr but also in more 5' regions encompassing the BCR gene. To characterize the latter breakpoints, we have molecularly cloned and mapped the entire gene, which encompasses approximately 130 kb of DNA. Mbcr negative, Ph'-positive ALL breakpoints were not distributed at random within the gene but rather were found exclusively within the 3' half of the first BCR gene intron. In contrast to the Mbcr, which is limited to a region of 5.8 kb, this part of the intron has a size of 35 kb. Translocation breakpoints in this region appear to be specific for ALL, since it was not rearranged in clinically well-defined CML specimens nor in any other tumor DNA samples examined.  相似文献   

10.
We have identified and molecularly cloned 46 kb of human DNA from chromosome 22 using a probe specific for the Philadelphia (Ph') translocation breakpoint domain of one chronic myelocytic leukemia (CML) patient. The DNAs of 19 CML patients were examined for rearrangements on chromosome 22 with probes isolated from this cloned region. In 17 patients, chromosomal breakpoints were found within a limited region of up to 5.8 kb, for which we propose the term "breakpoint cluster region" (bcr). The two patients having no rearrangements within bcr lacked the Ph' chromosome. The highly specific presence of a chromosomal breakpoint within bcr in Ph'-positive CML patients strongly suggests the involvement of bcr in this type of leukemia.  相似文献   

11.
Chronic myeloid leukaemia (CML) cells are often characterized by the presence of a small chromosome 22, in which most of the q arm has been translocated to chromosome 9. Using cell hybrids containing different parts of chromosome 22 I have mapped the c-sis oncogene, which is known to be situated on chromosome 22, to a region distal to the CML breakpoint (22q112) and proximal to 22q13. This demonstrates that c-sis is translocated to chromosome 9 in CML cells.  相似文献   

12.
Rearrangement of the short arm of chromosome 6 with a breakpoint at 6p23 was found in five patients with myeloid leukemia. Three of them had different morphological variants of AML (M2, M3, M4) and two blastic crisis of Ph1 negative and Ph1 positive CML. Identical translocation, t(6;9)(p23;q34), was revealed in two patients. One of them had AML (M2), the other blastic crisis of Ph1 negative CML. The blast cells of the last patient were morphologically similar to those in the M2 variant of AML. Translocation (6;9)(p23;q34) was also detected in two AML patients of Rowley and Potter (1976). The role of the breakpoint at 6p23 in myeloid malignancies needs further investigation.  相似文献   

13.
Chronic myeloid leukemia (CML) is characterized by the reciprocal translocation t(9;22)(q34;q11.2) which fuses the ABL1 oncogene on chromosome 9 with the BCR gene on chromosome 22. It is the BCR/ABL protein that drives the neoplasm and the ABL/BCR is not necessary for the disease. In the majority of CML cases, the BCR/ABL fusion gene is cytogenetically recognizable as a small derivative chromosome 22(der 22), which is known as the Philadelphia (Ph) chromosome. However, approximately 2-10% of patients with CML involve cryptic or complex variant translocations with deletions on the der(9) and/or der(22) occuring in roughly 10-15% of CML cases. Fluorescence in situ hybridization (FISH) analysis can help identify deletions and complex or cryptic rearrangements. Various BCR/ABL FISH probes are available, which include dual color single fusion, dual color extra signal (ES), dual color dual fusion and tri color dual fusion probes. To test the utility of these probes, six patients diagnosed with CML carrying different complex variant Ph translocations were studied by G-banding and FISH analysis using the BCR/ABL ES, BCR/ABL dual color dual fusion, and BCR/ABL tricolor probes. There are differences among the probes in their ability to detect variant rearrangements, with or without accompanying chromoso me 9 and/or 22 deletions, and low level disease.  相似文献   

14.
15.
Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be identified. Low‐coverage whole genome sequencing (LCWGS) could not only detect the previously unknown chromosomal translocation, but also provide the breakpoint candidate small region (with an accuracy of ±200 bases). Importantly, the sequencing cost of LCWGS is about US$300. Then, with the Sanger DNA sequencing, the precise breakpoint can be determined at a single base level. In our project, with LCWGS, BCR and ABL1 are successfully identified to be disrupted in three CML patients (at chr22:23,632,356 and chr9:133,590,450; chr22:23,633,748 and chr9:133,635,781; chr22: 23,631,831 and chr9:133,598,513, respectively). Due to the reconnection after chromosome breakage, classical fusion gene (BCR::ABL1) was found in bone marrow and peripheral blood. The precise breakpoints were helpful to investigate the pathogenic mechanism of CML and could better guide the classification of CML subtypes. This LCWGS method is universal and can be used to detect all diseases related to chromosome variation, such as solid tumours, liquid tumours and birth defects.  相似文献   

16.
X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5)(p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient's DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X.  相似文献   

17.
We describe a karyotypic polymorphism on the zebra finch Z chromosome. This polymorphism was discovered because of a difference in the position of the centromere and because it occurs at varying frequencies in domesticated colonies in the USA and Germany and among two zebra finch subspecies. Using DNA fluorescent in situ hybridization to map specific Z genes and measurements of DNA replication, we show that this polymorphism is the result of a large pericentric inversion involving the majority of the chromosome. We sequenced a likely breakpoint for the inversion and found many repetitive sequences. Around the breakpoint, there are numerous repetitive sequences and several copies of PAK3 (p21-activated kinase 3)-related sequences (PAK3Z) which showed testes-specific expression by RT-PCR. Our findings further suggest that the sequenced genome of the zebra finch may be derived from a male heterozygote for the Z chromosome polymorphism. This finding, in combination with regional differences in the frequency of the polymorphism, has important consequences for future studies using zebra finches.  相似文献   

18.
The Philadelphia (Ph) chromosome, a hallmark chromosomal anomaly observed in 95 percent of chronic myeloid leukemia (CML) cases, is known to involve the Abelson (ABL) proto-oncogene on chromosome 9 and the breakpoint cluster region (BCR) gene on chromosome 22, producing BCR/ABL mRNA encoding an abnormal tyrosine kinase protein. In the process of generating BCR-ABL fusion, the deletion of residual BCR or ABL occurs in 15-30 percent of CML patients. In addition, some rearrangements are complex, and do not yield the ABL/BCR fusion due to the involvement of a third chromosome in the rearrangement. The possible role of these deletions and complex rearrangements in disease outcome is an ongoing topic of research. We report our results of cytogenetic analysis with GTG banding and fluorescence in situ hybridization using dual color dual fusion probe (D-FISH) from Vysis Inc, USA in 169 (109 male and 60 female) CML patients registered at The Gujarat Cancer and Research Institute (GC and RI) from April 2004 to December 2005. GTG banding was carried out in 123 cases having analyzable metaphases. Of these 123 cases, D-FISH revealed atypical signal patterns in 57 patients (46%), and 12 cases revealed additional complex translocations indicative of disease progression. Out of 57 cases with atypical FISH patterns, 22 included metaphase FISH results, and the rest had only interphase FISH performed. In addition to the hallmark Philadelphia chromosome, other chromosomal aberrations in CML revealed heterogeneity of molecular events. Pooling of more data may lead to identification of new CML sub-groups and hence help in the analysis of clinical trials. Patients enrolled in our prospective study of prognostic significance will be followed up for disease free and overall survival in correlation with ABL-BCR deletion status.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号