首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Durrens P  Bernet J 《Genetics》1985,109(1):37-47
Two Podospora mutants carrying mutations modE and modF were persumed to be quiescent defective, because, when grown under glucose limitation, they differed from the wild-type strain in an excess of dry weight production and a reduction of cell survival. New insight on the action of modE and modF mutations was provided by the study of double mutants resulting from the association of modE or modF mutations with unrelated developmental mutations.—ModE and modF were first coupled to three allelic mutations ( modC) that inhibit production of all hyphal cell derivatives (late ramifications, aerial hyphae and protoperithecia). Suppression in the double mutants of the excess of proliferation associated with modE and modF and restoration of normal cell survival indicated that modE and modF result in an uncontrolled production of hyphal cell derivatives in which deregulation is presumed to be responsible for the reduction of cell survival following glucose exhaustion.—ModE and modF were associated with mutations of two genes (modD and modG) which abolish production of hyphal cell derivatives (like modC mutations) but also inhibit the renewal of growth of cells situated in the center of colonies. Investigations of eight of these double mutants showed that modE and modF mutations suppress the inhibitory action of modD and modG on production of hyphal cell derivatives and on growth renewal.—Taken together these results lead to the suggestion that the accomplishment of a quiescent state for cell survival under glucose starvation is the final stage in the differentiation of hyphal cells and prerequisite for the production of derivatives of hyphal cells and for a control of their development.  相似文献   

2.
Labarere J  Bernet J 《Genetics》1979,93(3):525-537
A mutation (modD) was selected in a gene involved in the control of protoplasmic incompatibility. Previous results (Labarere and Bernet 1979) showed that modD decreased the density of protoperithecia and caused a defect in ascospore germination. In addition, modD has a third defect: when modD stationary cells were isolated in order to obtain further development, renewal of growth rarely ensued. Instead, the modD cells lysed or produced microthalli from which normal growth never occurred. These defects were suppressed by beta-phenyl pyruvic acid, a protease inhibitor, and by the presence of a mutation (modC) that suppresses the proteases associated with protoplasmic incompatibility. The stationary wild-type cells' regeneration was inhibited by beta-phenyl pyruvic acid at levels that maintained modD cells' regeneration. These results suggest a biological role for the proteases associated with protoplasmic incompatibility.  相似文献   

3.
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Ω4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.  相似文献   

4.
Heavy-ion beams are known to cause great damage to cellular components and are particularly renowned for their ability to generate DNA double-strand breaks (DSBs). To gain insight into the mutagenic effect of carbon-ion beams and how such damage is repaired by the cell, Neurospora crassa mutants deficient in one of three components involved in the repair of DSBs, nonhomologous end-joining (NHEJ), homologous recombination repair (HR), and the Mre11-Rad50-Xrs2 (MRX) complex, were irradiated with a carbon-ion beam and killing effect, mutation frequencies, and the type of mutation incurred by survivors were analysed. The sensitivity of the NHEJ-deficient strain (mus-52) was higher than that of the wild-type and the HR-deficient (mei-3) strains at low doses of radiation, but was little changed as the level increased. As a result both the wild-type and HR-deficient strains were more sensitive than the NHEJ-deficient strain at high radiation levels. In addition, the frequency of forward mutation at the adenine-3 (ad-3) loci of the NHEJ-deficient mutant was lower than that of the wild-type strain at all levels, while the mutation frequency of the HR-deficient strain was consistently ∼3-fold higher than the wild-type. From the comparison of mutation type of each strain, deletions were frequently observed in wild-type strain, whilst base substitution and deletion in the mus-52 and mei-3 strains. These mutations resulting from carbon-ion-beam irradiation depend on the mechanism invoked to cope with DSBs. Furthermore, in wild-type cells, these mechanisms likely compete to repair DSBs.  相似文献   

5.
6.
Seven umr mutants of Saccharomyces cerevisiae which had reduced capacity for ultraviolet light (UV)-induced forward mutation from CAN1 to can1 were tested for sensitivity to L-canavanine relative to one wild-type UMR strain and one slightly UV-sensitive but phenotypically umr+ strain (mutant 306). Relative UV mutation resistance was estimated by dividing the UV fluence needed to yeild a particular induced mutation frequency by that needed to reach the same frequency in the genotypic wild-type strain. The umr5 and umr6 strains were especially sensitive to canavanine growth inhibition, while umr1 was no more sensitive than either wild type; umr2, umr3, umr4, a umr7, and α umr7 were equally sensitive to an intermediate degree. Incubation at 30°C of wildtype cells plated on canavanine-selective agar for increasingly longer times before UV irradiation resulted in decreasing UV mutation frequencies (reduced to 50% in 1.6 h). All umr strains tested in this way lost UV mutability faster than wild type, including mutant 306, umr1 (not sensitive to growth inhibition), and umr6 (very sensitive to growth inhibition). Cells were grown to stationary phase in YEDP growth medium and assayed for arginine and tryptophan transport into the cell. The umr6 strain, which had weak UV mutation resistance but high sensitivity to canavanine growth inhibition, transported arginine and tryptophan at essentially wild-type levels. The umr1 strain, however, which had moderate UV mutation resistance and normal canavanine toxicity, transported both amino acids at rates tenfold higher than wild type. The data suggest that increased canavanine toxicity does not necessarily lead to defective mutability at CAN1, and that mutational deficiency cannot result solely from increased canavanine toxicity. Although exposure to canavanine was shown to block mutation fixation and/or expression, it is suggested that the degree of growth inhibition is not strictly correlated with the degree of mutation resistance.  相似文献   

7.
Two new genes, palH and palI, where mutations mimic the effects of acidic growth pH have been identified in Aspergillus nidulans. A palH mutation is phenotypically indistinguishable from mutations in the palA, palB, palC, and palF genes, whereas palI mutations differ only in that they allow some growth at pH 8. Mutations in palA, B, C, F, and H are epistatic to a palI mutation and the significance of this epistasis is discussed. Additionally, palE and palB mutations have been shown to be allelic. Thus, a total of six genes where mutations mimic acidic growth conditions has been identified.  相似文献   

8.
A 16S rRNA methyltransferase, KsgA, identified originally in Escherichia coli is highly conserved in all living cells, from bacteria to humans. KsgA orthologs in eukaryotes possess functions in addition to their rRNA methyltransferase activity. E. coli Era is an essential GTP-binding protein. We recently observed that KsgA functions as a multicopy suppressor for the cold-sensitive cell growth of an era mutant [Era(E200K)] strain (Q. Lu and M. Inouye, J. Bacteriol. 180:5243-5246, 1998). Here we observed that although KsgA(E43A), KsgA(G47A), and KsgA(E66A) mutations located in the S-adenosylmethionine-binding motifs severely reduced its methyltransferase activity, these mutations retained the ability to suppress the growth defect of the Era(E200K) strain at a low temperature. On the other hand, a KsgA(R248A) mutation at the C-terminal domain that does not affect the methyltransferase activity failed to suppress the growth defect. Surprisingly, E. coli cells overexpressing wild-type KsgA, but not KsgA(R248A), were found to be highly sensitive to acetate even at neutral pH. Such growth inhibition also was observed in the presence of other weak organic acids, such as propionate and benzoate. These chemicals are known to be highly toxic at acidic pH by lowering the intracellular pH. We found that KsgA-induced cells had increased sensitivity to extreme acid conditions (pH 3.0) compared to that of noninduced cells. These results suggest that E. coli KsgA, in addition to its methyltransferase activity, has another unidentified function that plays a role in the suppression of the cold-sensitive phenotype of the Era(E200K) strain and that the additional function may be involved in the acid shock response. We discuss a possible mechanism of the KsgA-induced acid-sensitive phenotype.  相似文献   

9.
A strain of Schizosaccharomyces pombe carrying a disrupted Na+/H+ antiporter gene (sod2::sup3-5), in addition to the common auxotrophic mutations, ade6-216, ura4-D18 and leu1-32, is highly sensitive to media adjusted to pH 6.9. Reversion analysis of this strain yielded a group of revertants capable of growth at pH 6.9. Two of the revertants elongated and failed to form colonies at pH 3.5. Genetic characterization of one of the pH-sensitive elongated strains, J227, showed the presence of two independently segregating mutations. One, pub1 (?protein ubiquitin ligase 1), has recently been reported as an E3 protein ubiquitin ligase involved in cdc25 turnover. The second has been named elp3-1 (elongated at low pH). Genetic dissection of the original strain revealed that poor growth at high pH was due to the presence of the auxotrophic markers, suggesting a possible inhibitory effect of high pH on the function of permeases responsible for uptake of the necessary nutrients. Suppression of the high pH sensitivity required the presence of both the pub1-1 and elp3-1 mutations. While the pub1-1 mutation reduced the capacity of cells to tolerate relatively moderate concentrations of LiCl (3?mM) in liquid culture, it was capable of partially suppressing the extreme Li+ sensitivity caused by the sod2 disruption. Under these conditions, the growth of pub1-1 sod2::ura4 double mutant cells was improved over that of either pub1-1 or sod2::ura4 cells. The elp3-1 mutation had no effect on the Li+ tolerance in either wild-type or sod2::ura4 backgrounds. pub1-1 cells are elongated and incapable of colony formation at pH 3.5. In contrast, elp3-1 cells are elongated at pH 3.5 and pH?5.5 (the normal pH of minimal medium) but can form colonies under both conditions. J227 cells are significantly longer than either single mutant at pH 3.5 and do not form colonies but are visually similar to elp3-1 cells at pH 5.5. Complementation cloning in the J227 background yielded a genomic clone of pub1, allowing us to define the intron-exon structure of the gene. Sequences with high homology to the predicted amino acid sequence of pub1 have been identified in Saccharomyces cerevisiae (RSP5/NPI1), human (hRPF1), mouse (mNedd4), and rat (rNedd4). Based on the nature of our mutant selection, the pH-sensitive phenotype of the strains selected, and the known involvement of RSP5/NPI1 in membrane permease turnover in S. cerevisiae, we hypothesize a role for pub1, either directly or indirectly, in regulating membrane transport processes. This is further supported by the broad range of effects that the pub1-1 mutation exerts on overall performance of cells at high and low external pH, and in the presence of toxic levels of Li+.  相似文献   

10.
Osmotic stress, imposed by 0.5 M NaCl or other electrolytes and non-electrolytes, caused over a 100-fold reduction in the whole-cell nitrogen fixation activity in Klebsiella pneumoniae, wild-type strain M5A1. This reduction of nitrogen fixation activity could be reversed by the addition of proline to the culture medium at 0.5 mM concentration. With 0.5 M NaCl, in the presence of proline, nitrogenase activity was 47-fold greater than in the absence of proline. A mutation, originally isolated in Salmonella typhimurium, which resulted in proline over-production and enhanced osmotolerance, was transferred into K. pneumoniae by F′ conjugation. Intracellular proline, synthesized at high levels because of the mutation, had similar stimulatory effects on nitrogen fixation under osmotic stress as proline provided exogenously. In the overproducing strain, the cellular level of proline is elevated as much as 125-fold during stress over that seen in the control strain. To determine the mechanism of stimulation of nitrogen fixaton by proline during stress, the biosynthesis of nitrogenase polypeptides was studied. Net nitrogenase biosynthesis and the biosynthesis of other unidentified peptides, is strongly inhibited during osmotic stress; proline reverses the inhibition. The role of proline in enhancing nitrogen fixation during osmotic stress is discussed.  相似文献   

11.
We assessed the effects of different arcA mutations on poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli strains carrying the pha synthesis genes from Azotobacter sp. strain FA8. The arcA mutations used were an internal deletion and the arcA2 allele, a leaky mutation for some of the characteristics of the Arc phenotype which confers high respiratory capacity. PHB synthesis was not detected in the wild-type strain in shaken flask cultures under low-oxygen conditions, while ArcA mutants gave rise to polymer accumulation of up to 24% of their cell dry weight. When grown under microaerobic conditions in a bioreactor, the arcA deletion mutant reached a PHB content of 27% ± 2%. Under the same conditions, higher biomass and PHB concentrations were observed for the strain bearing the arcA2 allele, resulting in a PHB content of 35% ± 3%. This strain grew in a simple medium at a specific growth rate of 0.69 ± 0.07 h−1, whereas the deletion mutant needed several nutritional additives and showed a specific growth rate of 0.56 ± 0.06 h−1. The results presented here suggest that arcA mutations could play a role in heterologous PHB synthesis in microaerobiosis.  相似文献   

12.
Localized P1 mutagenesis was used to screen for conditionally lethal mutations in ribosomal protein genes. One such mutation, 2859mis, has been mapped inside the ribosomal protein gene cluster at 72 minutes on the Escherichia coli chromosome and cotransduces at 98% with rpsE (S5). The 2869mis mutation leads to thermosensitivity and impaired assembly in vivo of 50 S ribosomal particles at 42 °C. The strain carrying the mutation has an altered L24 ribosomal protein which at 42 °C shows weaker affinity for 23 S RNA than the wild-type protein. The mutational alteration involves a replacement of glycine by aspartic acid in protein L24 from the mutant. We conclude therefore that the 2859mis mutation affects the structural gene for protein L24 (rplX).  相似文献   

13.
Hsp90 selectively modulates phenotype in vertebrate development   总被引:1,自引:0,他引:1       下载免费PDF全文
Compromised heat shock protein 90 (Hsp90) function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.  相似文献   

14.
Although glutamate is a key compound in nitrogen metabolism, little is known about the function or regulation of its two biosynthetic enzymes, glutamate dehydrogenase and glutamate synthase. To begin the characterization of glutamate formation in Salmonella typhimurium, we isolated mutants having altered glutamate dehydrogenase and glutamate synthase activities. Mutants which failed to grow on media with glucose as the carbon source and less than 1 mM (NH4)2SO4 as the nitrogen source (Asm) had about one-fourth the normal glutamate synthase activity and one-half the glutamine synthetase activity. The asm mutations also prevented growth with alanine, arginine, or proline as nitrogen sources and conferred resistance to methionine sulfoximine. When a mutation (gdh-51) causing the loss of glutamate dehydrogenase activity was transferred into a strain with an asm-102 mutation, the resulting asm-102 gdh-51 mutant had a partial requirement for glutamate. A strain isolated as a complete glutamate auxotroph had a third mutation, in addition to the asm-102 gdh-51 lesions, that further decreased the glutamate synthase activities to 1/20 the normal level. Both the asm-102 and gdh-51 mutations were located on the S. typhimurium linkage map at sites distinct from those found for mutations causing similar phenotypes in Klebsiella aerogenes and Escherichia coli.  相似文献   

15.
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51–59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Len (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Len ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S 12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.  相似文献   

16.
Identification of a gene for alpha-tubulin in Aspergillus nidulans.   总被引:24,自引:0,他引:24  
N R Morris  M H Lai  C E Oakley 《Cell》1979,16(2):437-442
This paper demonstrates that revertants of temperature-sensitive benA (β-tubulin) mutations in Aspergillus nidulans can be used to identify proteins which interact with β-tubulin. Three benomyl-resistant benA (β-tubulin) mutants of Aspergillus nidulans, BEN 9, BEN 15 and BEN 19, were found to be temperature-sensitive (ts?) for growth. Temperature sensitivity co-segregated with benomyl resistance among the progeny of outcrosses of BEN 9, 15 and 19 to a wild-type strain, FGSC#99, indicating that temperature sensitivity was caused by mutations in the benA gene in these strains. Eighteen revertants to ts+ were isolated by selection at the restrictive temperature. Four had back-mutations in the benA gene and fourteen carried extragenic suppressor mutations. Two of the back-mutated strains had β-tubulins which differed from the β-tubulins of their parental strains by one (1?) or two (2?) negative charges on two-dimensional gel electrophoresis. Although the β-tubulins of the extragenic suppressor strains were all electrophoretically identical to those of the parental strains, one of the suppressor strains, BEN 9R7, had an electrophoretic abnormality in α1-tubulin (1+). A heterozygous diploid between this strain and a strain with wild-type α1-tubulin was found to have both wild-type and mutant (1+) α1-tubulins. This experiment rules out post-translational modification as a possible cause of the α1-tubulin abnormality. Thus the suppressor mutation in BEN 9R7 must be in a structural gene for α1-tubulin. We propose that this gene be designated tubA to denote that it is a gene for α1-tubulin in A. nidulans.  相似文献   

17.
18.
D Scott  M Fox  B W Fox 《Mutation research》1975,29(2):201-202
Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicates that neither of these phenomena are caused by the same repair mechanism that removes UV-induced pyrimidine dimers from the DNA.The recombination-deficient mutant rec1 is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (1) NC-induced mutagenesis is lower in the rec1 strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the rec1 strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about 14 to 13 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the rec1 strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 rec1 was followed at the permissive (36°) and nonpermissive (41°) temperatures, it became apparent that in the rec1 strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process.The rec1 strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuities present in DNA synthesized after treatment. The results are consistent with the idea that in NC-treated H. influenzae cells the replication-dependent mode of mutation fixation occurs by error-prone joining of interruptions present in the DNA synthesized after treatment. The possibility still exists, however, that during DNA replication mispairing occurs opposite certain alkylation-induced lesions and that mutations arising during replication of strain rec1 later disappear as a result of degradation of newly synthesized DNA, which is excessive in this strain.  相似文献   

19.
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.  相似文献   

20.
Induction of back mutations to prototrophy by methylene blue (MB)-sensitized photodynamic (PD) treatment has been studied in wild-type and repair-deficient strains of Salmonella typhimurium carrying either the base-pair substitution mutation hisG46 or the frameshift mutation hisD3052. We found that reversion of the hisG46 mutation was increased in a strain carrying a uvrB deletion and decreased in a strain carrying a recA-type mutation. Reversion of the hisD3052 (frameshift) mutation, on the other hand, was decreased in both uvrB deletion and recA-type strains. The former results are consistent with the hypothesis that the majority of MB-sensitized PD-induced base-pair substitution mutations arise by a mechanism similar to that currently believed to be involved in UV mutagenesis. The latter results suggest that PD-induced frameshift mutations may arise in some other way, and two possible mechanisms involving sequential action of the excision repair and recombinational repair pathways are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号