首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injury is defined as a complex phenomenon determined by the non-linear interaction of several intrinsic and extrinsic factors. The objective of the present study was to perform a systematic literature review on the injury risk factors in young soccer players. After electronic database searching, articles in line with the inclusion criteria were selected for the systematic review. Injury risk factor data were extracted and grouped in intrinsic and extrinsic risk factors. The main findings of the current review are as follows: (1) alteration in neuromuscular control such as limb asymmetry and dynamic knee valgus are important intrinsic risk factors; (2) maturation status may impair neuromuscular control and increase the risk of injury; (3) fatigue and poor recovery contribute to the onset of overuse injuries; (4) the impact of anthropometric factors is still unclear; (5) previous injuries increase the risk of re-injuries; (6) highly skilled players are more exposed to risk of injuries; (7) high external workloads increase the risk of injuries; (8) playing position, as well as sport specialization, exposes young soccer players to greater injury risk. Many factors (e.g., neuromuscular control, training load, maturity status) can modify the susceptibility to injury in young soccer players. Being aware of the complex interaction between these factors is essential to identify players at higher risk of injury, develop adequate prevention strategies, and from a scientific point of view move from a reductionist to a complex system approach.  相似文献   

2.
In soccer (football), dominant limb kicking produces higher ball velocity and is used with greater frequency than the non-dominant limb. It is unclear whether limb dominance has an effect on injury incidence. The purpose of this systematic review with meta-analysis is to examine the relationship between limb dominance and soccer injuries. Studies were identified from four online databases according to PRISMA guidelines to identify studies of soccer players that reported lower extremity injuries by limb dominance. Relevant studies were assessed for inclusion and retained. Data from retained studies underwent meta-analyses to determine relative risk of dominant versus non-dominant limb injuries using random-effects models. Seventy-four studies were included, with 36 of them eligible for meta-analysis. For prospective lower extremity injury studies, soccer players demonstrated a 1.6 times greater risk of injury to the dominant limb (95% CI [1.3–1.8]). Grouped by injury location, hamstring (RR 1.3 [95% CI 1.1–1.4]) and hip/groin (RR 1.9 [95% CI 1.3–2.7]) injuries were more likely to occur to the dominant limb. Greater risk of injury was present in the dominant limb across playing levels (amateurs RR 2.6 [95% CI 2.1–3.2]; youths RR 1.5 [95% CI 1.26–1.67]; professionals RR 1.3 [95% CI 1.14–1.46]). Both males (RR 1.5 [95% CI 1.33–1.68)] and females (RR 1.5 [95% CI 1.14–1.89]) were more likely to sustain injuries to the dominant limb. Future studies investigating soccer injury should adjust for this confounding factor by using consistent methods for assigning limb dominance and tracking use of the dominant versus non-dominant limb.  相似文献   

3.
Lateral ankle sprains are common injuries in quick, dynamic movements and are caused by rapid ankle inversion. Ankle braces are used to reduce ankle inversion, while allowing normal plantar and dorsiflexion ranges of motion. Knee injuries, such as anterior cruciate ligament injuries, are also common in dynamic movements. It is important to understand how ankle braces affect injury risk at other proximal joints. There is limited and conflicting results on how ankle braces affect knee mechanics during these types of movements. Additionally, it is unknown if sex differences exist when using an ankle brace. Therefore, the purpose of this study was to determine the effects of a hinged ankle brace and sex during a 45° cutting movement. Three-dimensional kinematics and ground reaction forces were collected using a motion capture system and force plate on ten men and eight women during cutting trials. 2 × 2 repeated measures ANOVAs were used to detect differences in ground reaction forces, as well as knee and ankle kinematics between brace conditions and sex (p < 0.05). The brace condition exhibited greater initial contact ankle dorsiflexion (p = 0.011), decreased peak ankle inversion (p < 0.01), and increased vertical loading rate (p = 0.040). Females performed the cutting movement with less initial contact (p = 0.019) and peak knee flexion (p = 0.023) compared to males. Ankle bracing had no impact on the observed sex differences. Females exhibited decreased knee flexion compared to males, which has been well documented in the literature. The use of an ankle braces reduced ankle injury risk variables while not adversely impacting knee mechanics during a 45° sidecutting movement.  相似文献   

4.
Objective To investigate the effect of a structured warm-up programme designed to reduce the incidence of knee and ankle injuries in young people participating in sports.Design Cluster randomised controlled trial with clubs as the unit of randomisation.Setting 120 team handball clubs from central and eastern Norway (61 clubs in the intervention group, 59 in the control group) followed for one league season (eight months).Participants 1837 players aged 15-17 years; 958 players (808 female and 150 male) in the intervention group; 879 players (778 female and 101 male) in the control group.Intervention A structured warm-up programme to improve running, cutting, and landing technique as well as neuromuscular control, balance, and strength.Main outcome measure The rate of acute injuries to the knee or ankle.Results During the season, 129 acute knee or ankle injuries occurred, 81 injuries in the control group (0.9 (SE 0.09) injuries per 1000 player hours; 0.3 (SE 0.17) in training v 5.3 (SE 0.06) during matches) and 48 injuries in the intervention group (0.5 (SE 0.11) injuries per 1000 player hours; 0.2 (SE 0.18) in training v 2.5 (SE 0.06) during matches). Fewer injured players were in the intervention group than in the control group (46 (4.8%) v (76 (8.6%); relative risk intervention group v control group 0.53, 95% confidence interval 0.35 to 0.81).Conclusion A structured programme of warm-up exercises can prevent knee and ankle injuries in young people playing sports. Preventive training should therefore be introduced as an integral part of youth sports programmes.  相似文献   

5.
The purpose of the study was to determine the influence of preseason lower-extremity range of motion (ROM) on the risk of muscle strain injury during a competitive season for elite soccer players. Thirty-six elite male soccer players (age, 25.6 +/- 4.7 years) had maximum static ROM for 6 movements of the lower extremity measured prior to the 2003-2004 English Premier League season. Player age, body size, dominant limb, and playing position were documented also. All lower-extremity muscle strain injuries were recorded prospectively during the competitive season, as was the total amount of time spent in training and games for each player. Soccer players sustaining a muscle strain injury in the hip flexors or knee flexors had lower preseason ROM (p < 0.05) in these muscle groups compared with uninjured players. Similar trends were observed for the remaining muscle groups, but all failed to reach statistical significance (p > 0.05). Most significantly, soccer players with lower preseason ROM in the hip flexors and knee flexors had a statistically higher risk for a muscle strain injury to these muscle groups during a competitive season. Age, body size, limb dominance, and playing position were not significant intrinsic risk factors for the development of muscle strain injuries. Screening of flexibility for soccer players should be conducted during preseason, and flexibility training should be prescribed to players with reduced ROM to lower the risk of developing a muscle strain injury.  相似文献   

6.
Neuromuscular control is critical for maintaining dynamic joint stability and mitigating the risk of anterior cruciate ligament (ACL) injury. Given the increased risk of ACL injury in females, sex-based differential muscle activation strategies are often associated with this risk. For example, the quadriceps-dominant muscle activation strategy sometimes observed in females has been discussed as a cause of their increased risk of ACL injury. However, there has been no synthesised knowledge on sex differences in muscle activation patterns associated with ACL injuries. Therefore, the purpose of this review was to synthesise sex differences in muscle activation patterns in movements associated with ACL injuries in both adult and adolescent populations. A systematic electronic database search was conducted. Thirty studies were included in the review. Females demonstrated higher pre- and post-landing activation of the quadriceps and lower activation of the hamstrings in 15 studies. Females also had higher quadriceps-to-hamstring co-contraction ratios during pre- and post-landing phases compared to their male counterparts in 4 of 9 studies that considered co-contraction. While some studies supported the quadriceps-dominant activation strategies in females, no consensus can be drawn due to methodological inconsistencies and limitations. Also, despite the importance of ACL injury prevention in children and adolescents, the evidence on sex difference in muscle activation patterns in this population is insufficient to draw meaningful conclusions.  相似文献   

7.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

8.
Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED) – the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces – is a potential contributing factor to the “at-risk” movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population.  相似文献   

9.
Ligament sprains, defined as tearing of bands of fibrous tissues within ligaments, account for a majority of injuries to the foot and ankle complex in field-based sports. External rotation of the foot is considered the primary injury mechanism of syndesmotic ankle sprains with concomitant flexion and inversion/eversion associated with particular patterns of ligament trauma. However, the influence of the magnitude and direction of loading vectors to the ankle on the in situ stress state of the ligaments has not been quantified in the literature. The objective of the present study was to search for the maximum injury tolerance of a human foot with an acceptable subfailure distribution of individual ligaments. We used a previously developed and comprehensively validated foot and ankle model to reproduce a range of combined foot rotation experienced during high-risk sports activities. Biomechanical computational investigation was performed on initial foot rotation from \(20{^{\circ }}\) of plantar flexion to \(15{^{\circ }}\) of dorsiflexion, and from \(15{^{\circ }}\) of inversion to \(15{^{\circ }}\) of eversion prior to external rotation. Change in initial foot rotation shifted injury initiation among different ligaments and resulted in a wide range of injury tolerances at the structural level (e.g., 36–125 Nm of rotational moment). The observed trend was in agreement with a parallel experimental study that initial plantar flexion decreased the incidence of syndesmotic injury compared to a neutral foot. A mechanism of distributing even loads across ligaments subjected to combined foot rotations was identified. This mechanism is potential to obtain the maximum load-bearing capability of a foot and ankle while minimizing the injury severity of ligaments. Such improved understanding of ligament injuries in athletes is necessary to facilitate injury management by clinicians and countermeasure development by biomechanists.  相似文献   

10.
Summary. The aim of this study was to explore the relationship between changes in plasma amino acids and the incidence of sports injuries during a soccer season. Fourteen plasma amino acids were assayed at monthly intervals in 12 young soccer players during a whole soccer season. Based on the number and severity of injuries the soccer players were divided into an injury-prone and a non-injury-prone group. The mean plasma level of the amino acid glycine was significantly lower (P=0.009) in the injury-prone group than the other group, while the mean plasma levels of tyrosine, tryptophan and lysine were higher in the injury-prone group during this period (P<0.05). However there were no significant differences in the calculated plasma tryptophan and tyrosine/large neutral amino acids ratios. Significant linear time trends were observed for taurine, ornithine, lysine and the tryptophan/large neutral amino acids ratio.These results indicate that the plasma concentrations of glycine and to a lesser extent those of tyrosine, tryptophan and lysine may be promising peripheral markers for injury-proneness in young soccer players. Whether a role for glycine substitution will be indicative to reduce the occurrence of sports injuries will need to be investigated in future studies.  相似文献   

11.
Injuries to the lateral collateral ligaments of the ankle joint are among the most frequently occurring injuries at the lower limb. The present study was conducted for the purpose of establishing the basis for the development of a quantitative diagnostic procedure for such injuries. To achieve this goal, the effect of four types of ligament injuries on the three-dimensional mechanical characteristics of the ankle were investigated. These types of injuries consisted of: 1) isolated tear of the anterior talofibular ligament; 2) isolated tear of the calcaneofibular ligament; 3) isolated tear of the posterior talofibular ligament; and 4) combined tear of both the anterior talofibular ligament and the calcaneofibular ligament. The experiments were conducted on 31 amputated lower limbs and consisted of comparing the three-dimensional load-displacement and flexibility characteristics of the ankle joint prior to and following sectioning of selected ligaments. The experimental and analytical procedures used to derive these characteristics was developed previously by the authors. From the results of this study it was concluded that the three-dimensional flexibility characteristics of the ankle joint are strongly influenced by damage to the lateral collateral ligaments. Furthermore, it was found that each type of ligament injury produced unique and identifiably changes in the flexibility characteristics of the ankle. These unique changes, which are described in detail in this paper, can be used to discriminate between the different types of ligament injuries. Consequently, it was concluded that it is feasible to develop a quantitative diagnostic procedure for ankle ligament injuries based on the effect of the injury on the flexibility characteristics of the ankle.  相似文献   

12.
13.
Ligament sprains account for a majority of injuries to the foot and ankle complex among athletic populations. The infeasibility of measuring the in situ response and load paths of individual ligaments has precluded a complete characterization of their mechanical behavior via experiment. In the present study a fiber-based modeling approach of in situ ankle ligaments was developed and validated for determining the heterogeneous force-elongation characteristics and the consequent injury patterns. Nine major ankle ligaments were modeled as bundles of discrete elements, corresponding functionally to the structure of collagen fibers. To incorporate the progressive nature of ligamentous injury, the limit strain at the occurrence of fiber failure was described by a distribution function ranging from 12% to 18% along the width of the insertion site. The model was validated by comparing the structural kinetic and kinematic response obtained experimentally and computationally under well-controlled foot rotations. The simulation results replicated the 6 degree-of-freedom bony motion and ligamentous injuries and, by implication, the in situ deformations of the ligaments. Gross stiffness of the whole ligament derived from the fibers was comparable to existing experimental data. The present modeling approach provides a biomechanically realistic, interpretable and computationally efficient way to characterize the in situ ligament slack, sequential and heterogeneous uncrimping of collagen fascicles and failure propagation as the external load is applied. Applications of this model include functional ankle joint mechanics, injury prevention and countermeasure design for athletes.  相似文献   

14.
Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force–elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.  相似文献   

15.
16.

Background

Football (soccer) is endorsed as a health-promoting physical activity worldwide. When football programs are introduced as part of general health promotion programs, equal access and limitation of pre-participation disparities with regard to injury risk are important. The aim of this study was to explore if disparity with regard to parents’ educational level, player body mass index (BMI), and self-reported health are determinants of football injury in community-based football programs, separately or in interaction with age or gender.

Methodology/Principal Findings

Four community football clubs with 1230 youth players agreed to participate in the cross-sectional study during the 2006 season. The study constructs (parents’ educational level, player BMI, and self-reported health) were operationalized into questionnaire items. The 1-year prevalence of football injury was defined as the primary outcome measure. Data were collected via a postal survey and analyzed using a series of hierarchical statistical computations investigating associations with the primary outcome measure and interactions between the study variables. The survey was returned by 827 (67.2%) youth players. The 1-year injury prevalence increased with age. For youths with parents with higher formal education, boys reported more injuries and girls reported fewer injuries than expected; for youths with lower educated parents there was a tendency towards the opposite pattern. Youths reporting injuries had higher standardized BMI compared with youths not reporting injuries. Children not reporting full health were slightly overrepresented among those reporting injuries and underrepresented for those reporting no injury.

Conclusion

Pre-participation disparities in terms of parents’ educational level, through interaction with gender, BMI, and self-reported general health are associated with increased injury risk in community-based youth football. When introduced as a general health promotion, football associations should adjust community-based youth programs to accommodate children and adolescents with increased pre-participation injury risk.  相似文献   

17.
Soccer players may develop recurrent hamstring injuries. This may be due to inadequate rehabilitation or to recurrent injury. In addition, following injury, the hamstring muscular complex may be permanently damaged, resulting in decreased strength, and increased likelihood of recurrent injury. Fourteen professional soccer players were assessed by clinical examination and by isokinetic testing with a Cybex II machine. Seven had suffered moderate or major hamstring injuries in the past year. There were seven controls. None of the hamstring group were currently suffering from an acute hamstring injury. The results of the two groups were compared. There were no differences in the mean results. This pilot study suggests that no permanent functional damage occurs to the muscular complex after moderate or major hamstring injuries after correct treatment. However, further research is required to confirm this.  相似文献   

18.
ABSTRACT: Serpell, BG, Scarvell, JM, Ball, NB, and Smith, PN. Mechanisms and risk factors for noncontact ACL injury in age mature athletes who engage in field or court sports: A summary of literature since 1980. J Strength Cond Res 26(11): 3160-3176, 2012-Epidemiological data show that in the last 10 years alone the incidence and rate of anterior cruciate ligament (ACL) injuries have not changed appreciably. Furthermore, many ACL injuries appear to be noncontact in nature and sustained while engaging in some field or court sport. Thus, the need to investigate novel methods and adopt training strategies to prevent ACL injuries is paramount. To do so, however, requires an understanding of the mechanisms and risk factors for the injury. The aim of this review was to investigate the mechanisms and risk factors for noncontact ACL injuries in age mature athletes who compete in field or court sports. A search of the entire MEDLINE database for biomedicine was performed, and an iterative reference check was also conducted. A total of 87 articles disclosed met the eligibility criteria. Articles were grouped into 'themes'; 'anatomical and biomechanical mechanisms and risk factors,' 'intrinsic mechanisms and risk factors,' and 'extrinsic mechanisms and risk factors.' In this review, it is concluded that there are still a number of risk factors and mechanisms for noncontact ACL injury that are not well understood. However, the importance of dynamic knee joint stability is highlighted. It is also suggested that novel methods for preventing ACL injury be investigated and developed.  相似文献   

19.
Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2?±?9.3 Nm than the flexible shoe at 35.4?±?5.7 Nm. While talus rotation was greater in the rigid shoe (15.9?±?1.6 deg versus 12.1?±?1.0 deg), the flexible shoe generated more talus eversion (5.6?±?1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3?±?0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot∕shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe design and ankle ligament strain patterns. In future studies, these data may be useful in characterizing shoe design parameters and balancing potential ankle injury risks with player performance.  相似文献   

20.
Joint injury is a potent risk factor for osteoarthritis, the most important musculoskeletal disease affecting humankind. Yet the population incidence of soft tissue knee injury is not well documented. Using health-care register data from Sweden, Peat and colleagues report that soft tissue knee injuries are common, peak in adolescence and early adulthood, have a second spike in women who are 35 to 49 years old, and continue throughout the lifespan. The study highlights the need for more knowledge on the natural history of knee injuries, their impact on knee osteoarthritis development and progression, and the potential for prevention programs to reduce the incidence of these injuries.Joint injury is a potent risk factor for osteoarthritis (OA), the most important musculoskeletal disease affecting humankind. Although evidence is mounting that knee joint injury rates are high and increasing, it is also perhaps the lowest hanging fruit for primary OA prevention; several randomized clinical trials have shown that knee injuries can be dramatically reduced with relatively straightforward interventions. Yet outside of anterior cruciate ligament (ACL) injury and despite its potential public health impact, the population incidence of soft tissue knee injury requiring medical attention is not well documented: we have not known the extent or the nature of the problem, until now.In a recent issue of Arthritis Research & Therapy, Peat and colleagues [1] provided population-wide estimates of clinically diagnosed soft tissue knee injuries across all ages on the basis of an entire region of Sweden (approximately 1.3 million people). The opportunity to report and classify all clinically diagnosed knee injuries across the lifespan arises from unique and detailed health-care registries typical to Scandinavian countries. This overcomes weaknesses of previous epidemiological evaluations of knee injuries, which are limited to specific health-care settings, subgroups of people, and specific injury types. Of note, the findings of Peat and colleagues [1] have convergent validity - largely agreeing with previous reports of incidence for specific injury types and subgroups where data overlap.What emerges is that population exposure to soft tissue knee injury is a common problem; the annual incidences for males and females are 766 and 676 per 100,000 persons per year, respectively. This is approximately 10 times higher than ACL injuries alone. If these ‘less catastrophic’ but more common injuries are a risk for OA development (as risk factor studies measuring self-reported injury suggest [2]), then this study may be uncovering and detailing critical new exposure data. They are clearly more numerous though more difficult to accurately diagnose. This study begins to shed light on this challenge.Also revealed is new information on age and gender differences. The incidence of soft tissue knee injuries peaks in adolescence and early adulthood and is likely sports-related, matching seasonal fluctuations in popular sports in Sweden. The rates after this period decline over the lifespan with a notable exception: females from 35 to 49 experience a second peak. This is intriguing and the reasons are not clear, although the authors propose that the previously reported link between parity/child-bearing and knee OA may be mediated by injury. Although the reasons remain obscure, the finding is compelling and may help elucidate the consistently reported, but unexplained, higher prevalence of knee OA in females.Peat and colleagues [1] show that, although incidence rates are highest in the second and third decades of life, considerable rates of contusion, collateral ligament sprain, and other soft tissue strains continue into middle and old age. These injuries coincide with the age of onset of knee OA symptoms and illustrate the challenge of differentiating what is truly an injury from what is part of a previously latent or degenerative process or both. This also applies to meniscal injuries. Surgeries for meniscal tears peak in the mid to late 40s [35]. In contrast, Peat and colleagues [1] report a high incidence of meniscal tears in adolescents and young adults. As acknowledged by the authors, less severe injuries such as meniscal tears likely suffer from some misclassification. However, the relationship between diagnosis and surgery for meniscal tears requires further investigation.The high injury incidence among adolescents and young adults, together with the known risk of OA incidence from ACL and meniscal injuries, provides further impetus for implementing knee injury prevention programs, for which there is a strong body of level 1 evidence [611]. Efficacy has been demonstrated primarily in the sports team setting, implemented as novel 10- to 15-minute team warm-ups consisting of neuromuscular exercises to train athletes to land, decelerate, and push off with better lower limb alignment and improved trunk control, balance, and proprioception. The reported risk reductions range from 41% to 88% [7,8,11]. Given the age and frequency at which these injuries most often occur and their potential sequelae, perhaps targeting injury prevention programs to physical education classes in public schools could address a growing public health problem.The study by Peat and colleagues highlights several areas for further study. Knowledge is needed on the natural history of knee injuries in the development of knee OA as well as the potential for prevention programs to reduce the incidence. The spike of injuries in females between 35 and 49 requires confirmation and further investigation as to its causes, prevention, and potential role in OA development or progression. The same is true for injuries that occur in middle and older age, often coinciding with a time when knee OA has been diagnosed. Further clarity is needed around meniscal injury: what is traumatic injury and what is degenerative knee disease? There is still much to discover about the different knee injury types throughout the lifespan and the initiation and progression of knee OA. The study by Peat and colleagues [1] provides a good platform for this to be pursued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号