首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
As a rosette plant, Arabidopsis thaliana forms leaves near to the ground, which causes the plant to be vulnerable to shading by neighbours. One mechanism to avoid such shading is the regulation of leaf inclination, such that leaves can be raised to more vertical orientations to prevent neighbouring leaves from overtopping them. Throughout Arabidopsis rosette development, rosette leaves move to more vertical orientations when shaded by neighbouring leaves, exposed to low light levels or placed in the dark. After dark-induced reorientation of leaves, returning them to white light causes the leaves to reorient to more horizontal inclinations. These light-dependent leaf movements are more robust than, and distinct from, the diurnal movements of rosette leaves. However, the movements are gated by the circadian clock. The light-dependent leaf orientation response is mediated primarily through phytochromes A, B and E, with the orientation varying with the ratio of red light to far-red light, consistent with other shade-avoidance responses. However, even plants lacking these phytochromes were able to alter leaf inclination in response to white light, suggesting a role for other photoreceptors. In particular, we found significant changes in leaf inclination for plants exposed to green light. This green light response may be caused, in part, by light-dependent regulation of abscisic acid (ABA) biosynthesis.  相似文献   

2.
Previously, it has been shown that Arabidopsis thaliana leaves exposed to high light accumulate hydrogen peroxide (H2O2) in bundle sheath cell (BSC) chloroplasts as part of a retrograde signaling network that induces ASCORBATE PEROXIDASE2 (APX2). Abscisic acid (ABA) signaling has been postulated to be involved in this network. To investigate the proposed role of ABA, a combination of physiological, pharmacological, bioinformatic, and molecular genetic approaches was used. ABA biosynthesis is initiated in vascular parenchyma and activates a signaling network in neighboring BSCs. This signaling network includes the Gα subunit of the heterotrimeric G protein complex, the OPEN STOMATA1 protein kinase, and extracellular H2O2, which together coordinate with a redox-retrograde signal from BSC chloroplasts to activate APX2 expression. High light–responsive genes expressed in other leaf tissues are subject to a coordination of chloroplast retrograde signaling and transcellular signaling activated by ABA synthesized in vascular cells. ABA is necessary for the successful adjustment of the leaf to repeated episodes of high light. This process involves maintenance of photochemical quenching, which is required for dissipation of excess excitation energy.  相似文献   

3.
Morphological responses of American cranberry (Vacciniummacrocarpon Ait, Ericaceae) to different light conditions (red,far-red, white light and sunlight) were examined. Root growth and development,stem elongation, leaf enlargement, de-etiolation of stem and leaf, flower budformation, and flowering of American cranberry were measured under each lightcondition and in the dark. It was found that red light promotes development ofroots and leaves, flowering, and de-etiolation of stem and leaf of Americancranberry. Stem elongation and etiolation of stem and leaf were shown infar-redlight and dark. Anthocyanin biosynthesis as phytochemical response in cranberryplants was most sensitive to red light. Estimation of anthocyanin levels indifferent parts of cranberry plant suggested that anthocyanins were presentonlyin red fruit skins, and not in peeled fruits, green fruits, green leaves, greenstems, roots and seeds.  相似文献   

4.
Ethylene induces enhanced differential growth in petioles of Arabidopsis (Arabidopsis thaliana), resulting in an upward movement of the leaf blades (hyponastic growth). The amplitude of this effect differs between accessions, with Columbia-0 (Col-0) showing a large response, while in Landsberg erecta (Ler), hyponastic growth is minimal. Abscisic acid (ABA) was found to act as an inhibitory factor of this response in both accessions, but the relationship between ethylene and ABA differed between the two; the ability of ABA to inhibit ethylene-induced hyponasty was significantly more pronounced in Col-0. Mutations in ABI1 or ABI3 induced a strong ethylene-regulated hyponastic growth in the less responsive accession Ler, while the response was abolished in the ABA-hypersensitive era1 in Col-0. Modifications in ABA levels altered petiole angles in the absence of applied ethylene, indicating that ABA influences petiole angles also independently from ethylene. A model is proposed whereby the negative effect of ABA on hyponastic growth is overcome by ethylene in Col-0 but not in Ler. However, when ABA signaling is artificially released in Ler, this regulatory mechanism is bypassed, resulting in a strong hyponastic response in this accession.  相似文献   

5.
Plant heterotrimeric G-proteins have been implicated in a number of signaling processes. However, most of these studies are based on biochemical or pharmacological approaches. To examine the role of heterotrimeric G-proteins in plant development, we generated transgenic Arabidopsis expressing the Galpha subunit of the heterotrimeric G-protein under the control of a glucocorticoid-inducible promoter. With the conditional overexpression of either the wild type or a constitutively active version of Arabidopsis Galpha, transgenic seedlings exhibited a hypersensitive response to light. This enhanced light sensitivity was more exaggerated in a relatively lower intensity of light and was observed in white light as well as far-red, red, and blue light conditions. The enhanced responses in far-red and red light required functional phytochrome A and phytochrome B, respectively. Furthermore, the response to far-red light depended on functional FHY1 but not on FIN219 and FHY3. This dependence on FHY1 indicates that the Arabidopsis Galpha protein may act only on a discrete branch of the phytochrome A signaling pathway. Thus, our results support the involvement of a heterotrimeric G-protein in the light regulation of Arabidopsis seedling development.  相似文献   

6.
7.
8.
Summary Unrolling of etiolated wheat leaf segments is stimulated by short periods of exposure to red light. Both gibberellic acid and kinetin will stimulate unrolling in the dark, whereas abscisic acid (ABA) inhibits the unrolling response to these two hormones and to red light. Exposure to 5 minutes of red light leads to a rapid increase in endogenous gibberellin levels in etiolated wheat leaves, and this increase is followed by a rapid decline. Pre-treatment with ABA inhibits the increase in gibberellin levels in response to red light, but the ihibitory effect of ABA on unrolling cannot be ascribed only to its effect on gibberellin levels. Pre-treatment with red light reduces the lag-phase in chlorophyll development when wheat leaf segments are subsequently exposed to white light; the effect of red light may be replaced by pre-treatment with kinetin, but gibberellic acid is relatively ineffective in this respect.  相似文献   

9.
In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.  相似文献   

10.
11.
The authors sought to investigate the role of phytochromes A and B (phyA and phyB) and cryptochromes 1 and 2 (cryl and cry2) in the synchronization of the leaf position rhythm in Arabidopsis thaliana. The seedlings were transferred from white light-dark cycles to free-running conditions with or without exposure to a light treatment during the final hours of the last dark period. The phase advance caused by a far-red light treatment was absent in the phyA mutant, deficient in the fhy1 and fhy3 mutants involved in phyA signaling, and normal in the cryl and cryl cry2 mutants. The phase shift caused by blue light was normal in the cry2 mutant; reduced in the phyA, cryl, phyA cry1, and cry1 cry2 mutants; and abolished in the phyA cryl cry2 triple mutant. The phase shift caused by red light was partially retained by the phyA phyB double mutant. The authors conclude that cryl and cry2 participate as photoreceptors in the blue light input to the clock but are not required for the phyA-mediated effects on the phase of the circadian rhythm of leaf position. The signaling proteins FHY1 and FHY3 are shared by phyA-mediated photomorphogenesis and phyA input to the clock.  相似文献   

12.
Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the Pfr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when applied at the beginning of the main photoperiod far-red light did not affect the number of rosette leaves. Different effects on the plant form dependent on the time of treatment with far-red light-breaks are also discussed.  相似文献   

13.
Abscisic acid (ABA) is a major regulator in the adaptation of plants to environmental stresses, plant growth, and development. In higher plants, the ABA biosynthesis pathway involves the oxidative cleavage of 9-cis-epoxycarotenoids, which may be the key regulatory step in the pathway catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). We developed a new inhibitor of ABA biosynthesis targeting NCED and named it abamine (ABA biosynthesis inhibitor with an amine moiety). Abamine is a competitive inhibitor of NCED, with a Ki of 38.8 microm. In 0.4 m mannitol solution, which mimics the effects of osmotic stress, abamine both inhibited stomatal closure in spinach (Spinacia oleracea) leaves, which was restored by coapplication of ABA, and increased luminescence intensity in transgenic Arabidopsis containing the RD29B promoter-luciferase fusion. The ABA content of plants in 0.4 m mannitol was increased approximately 16-fold as compared with that of controls, whereas 50 to 100 microm abamine inhibited about 50% of this ABA accumulation in both spinach leaves and Arabidopsis. Abamine-treated Arabidopsis was more sensitive to drought stress and showed a significant decrease in drought tolerance than untreated Arabidopsis. These results suggest that abamine is a novel ABA biosynthesis inhibitor that targets the enzyme catalyzing oxidative cleavage of 9-cis-epoxycarotenoids. To test the effect of abamine on plants other than Arabidopsis, it was applied to cress (Lepidium sativum) plants. Abamine enhanced radicle elongation in cress seeds, which could be due to a decrease in the ABA content of abamine-treated plants. Thus, it is possible to think that abamine should enable us to elucidate the functions of ABA in cells or plants and to find new mutants involved in ABA signaling.  相似文献   

14.
We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light-absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF3, upon light exposure, PIF7 rapidly migrates to intranuclear speckles, where it colocalizes with phyB. However, in striking contrast to PIF3, this process is not accompanied by detectable light-induced phosphorylation or degradation of PIF7, suggesting that the consequences of interaction with photoactivated phyB may differ among PIFs. Nevertheless, PIF7 acts similarly to PIF3 in prolonged red light as a weak negative regulator of phyB-mediated seedling deetiolation. Examination of pif3, pif4, and pif7 double mutant combinations shows that their moderate hypersensitivity to extended red light is additive. We provide evidence that the mechanism by which these PIFs operate on the phyB signaling pathway under prolonged red light is through maintaining low phyB protein levels, in an additive or synergistic manner, via a process likely involving the proteasome pathway. These data suggest that the role of these phyB-interacting bHLH factors in modulating seedling deetiolation in prolonged red light may not be as phy-activated signaling intermediates, as proposed previously, but as direct modulators of the abundance of the photoreceptor.  相似文献   

15.
Morphological responses of plants to shading have long been studied as a function of light quality, in particular the ratio of red to far red light that affects phytochrome activity. However, changes in light quantity are also expected to be important for the shading response because plants have to adapt to the reduction in overall energy input. Here, we present data on the involvement of auxin and ethylene in the response to low light intensities. Decreased light intensities coincided with increased ethylene production in Arabidopsis rosettes. This response was rapid because the plants reacted within minutes. In addition, ethylene- and auxin-insensitive mutants are impaired in their reaction to shading, which is reflected by a defect in leaf elevation and an aberrant leaf biomass allocation. On the molecular level, several auxin-inducible genes are up-regulated in wild-type Arabidopsis in response to a reduction in light intensity, including the primary auxin response gene IAA3 and a protein with similarity to AUX22 and the 1-aminocyclopropane-1-carboxylic acid synthase genes ACS6, ACS8, and ACS9 that are involved in ethylene biosynthesis. Taken together, the data show that ethylene and auxin signaling are required for the response to low light intensities.  相似文献   

16.
Most plants grow in dense vegetation with the risk of being out-competed by neighboring plants. These neighbors can be detected not only through the depletion in light quantity that they cause, but also through the change in light quality, which plants perceive using specific photoreceptors. Both the reduction of the red:far-red ratio and the depletion of blue light are signals that induce a set of phenotypic traits, such as shoot elongation and leaf hyponasty, which increase the likelihood of light capture in dense plant stands. This set of phenotypic responses are part of the so called shade avoidance syndrome (SAS). This addendum discusses recent findings on the regulation of the SAS of Arabidopsis thaliana upon blue light depletion. Keller et al. and Keuskamp et al. show that the low blue light attenuation induced shade avoidance response of seedling and rosette-stage A. thaliana plants differ in their hormonal regulation. These studies also show there is a regulatory overlap with the R:FR-regulated SAS.  相似文献   

17.
Young leaves of white clover are subjected to low irradiance and low red to far-red (R:FR) ratio within canopies. The objectives were to investigate the consequences of low R:FR ratio on morphology, net CO2 assimilation and photochemical activity of leaves developed under simulated light environment of canopy. We used far-red (FR) light emitting diodes to modify the R:FR ratio only at the developing leaf under a low irradiance. Net CO2 assimilation rate, stomatal conductance and leaf morphology were not affected by low R:FR ratio. FR exposure slightly reduced the photochemical quantum yield of PSII but there were no consequences on electron flow through photosystem II. The carbon fixation by the leaf was therefore not modified by light quality. However, low R:FR ratio decreased the leaf chlorophyll content by 21 %. Those effects were only attributed to just unfolded leaves as they were not persistent in mature leaves and there were no consequences on plant biomass accumulation.  相似文献   

18.
19.
20.
Oak Seedlings Grown in Different Light Qualities   总被引:2,自引:0,他引:2  
Seedlings of oak (Quercus robur) were germinated in darkness for 3 weeks and then given continuous light or short pulses of light (5–8 min every day). The morphological development was followed during 25 days. In continuous white, blue, and red light the stem growth terminated after about 10 days by formation of a resting bud. At that time the seedlings were about 100 mm high. In con tinuous long wavelength farred light (wavelength longer than 700 nm) the stem growth including leaf formation was continuous without the formation of resting buds, and the stem length was about 270 mm after 25 days. The number of nodes developed became twice that of the seedlings grown in while light. The leaves became well developed in all light colours, but leaf areas were largest in plants cultivated in white light. Compared to dark grown seedlings the mean area per leaf was increased about five times in continuous long wavelength far red light. A supplement with short (5 min) pulses of red light each day increased the leaf area up to 20 times. The stem elongation showed a high energy reaction response, i.e. the stem length increased only in continuous long wavelength far-red light but was not influenced by short pulses of red light or far-red light. The leaf expansion, however, was increased by short pulses of red light with a partial reversion of the effect by a subsequent pulse of far-red light. The fraction of the plant covered with periderm was higher in plants given continuous light. In respect to periderm inhibition continuous long wavelength far red light was the most effective. The transfer of seedlings from darkness to continuous white light gave anthocyanin formation in the stem 10–20 mm below the apex. This formation took place in the cortex and was evident in plants grown in darkness or under short pulses of light. Plants grown in continuous red, blue or long wavelength Far red light showed only traces of anthocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号