首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chromatin structure of eukaryotic telomeres plays an essential role in telomere functions. However, their study might be impaired by the presence of interstitial telomeric sequences (ITSs), which have a widespread distribution in different model systems. We have developed a simple approach to study the chromatin structure of Arabidopsis telomeres independently of ITSs by analyzing ChIP-seq data. This approach could be used to study the chromatin structure of telomeres in some other eukaryotes. The analysis of ChIP-seq experiments revealed that Arabidopsis telomeres have higher density of histone H3 than centromeres, which might reflects their short nucleosomal organization. These experiments also revealed that Arabidopsis telomeres have lower levels of heterochromatic marks than centromeres (H3K9Me2 and H3K27Me), higher levels of some euchromatic marks (H3K4Me2 and H3K9Ac) and similar or lower levels of other euchromatic marks (H3K4Me3, H3K36Me2, H3K36Me3 and H3K18Ac). Interestingly, the ChIP-seq experiments also revealed that Arabidopsis telomeres exhibit high levels of H3K27Me3, a repressive mark that associates with many euchromatic genes. The epigenetic profile of Arabidopsis telomeres is closely related to the previously defined chromatin state 2. This chromatin state is found in 23% of Arabidopsis genes, many of which are repressed or lowly expressed. At least, in part, this scenario is similar in rice.  相似文献   

2.
Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K9(2Me) and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K9(2Me) or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation.  相似文献   

3.
《Epigenetics》2013,8(9):1055-1058
Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed.  相似文献   

4.
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.  相似文献   

5.
6.
DNA methylation modulates telomere function. In Arabidopsis thaliana, telomeric regions have a bimodal chromatin organization with unmethylated telomeres and methylated subtelomeres. To gain insight into this organization we have generated TAIR10-Tel, a modified version of the Arabidopsis reference genome with additional sequences at most chromosome ends. TAIR10-Tel has allowed us to analyse DNA methylation at nucleotide resolution level in telomeric regions. We have analysed the wild-type strain and mutants that encode inactive versions of all currently known relevant methyltransferases involved in cytosine methylation. These analyses have revealed that subtelomeric DNA methylation extends 1 to 2 kbp from Interstitial Telomeric Sequences (ITSs) that abut or are very near to telomeres. However, DNA methylation drops at the telomeric side of the telomere-subtelomere boundaries and disappears at the inner part of telomeres. We present a comprehensive and integrative model for subtelomeric DNA methylation that should help to decipher the mechanisms that govern the epigenetic regulation of telomeres. This model involves a complex network of interactions between methyltransferases and subtelomeric DNA sequences.  相似文献   

7.
Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed.Key words: telomeres, subtelomeres, euchromatin, heterochromatin, ChIP, immunolocalizationTelomeric DNA usually contains tandem repeats of a short GC rich motif. The number of repeats and, therefore, the length of telomeres is subject to regulation and influences relevant biological processes like aging and cancer.13 In situ hybridization studies have revealed that telomeric repeats are also present at interstitial chromosomal loci.4,5 An analysis of the genome sequence from different eukaryotes indicates that ITSs have a widespread distribution in different model systems including zebrafish, chicken, opossum, mouse, dog, cattle, horse, human, rice, poplar or Arabidopsis (see Fig. 1 for an example; www.ncbi.nlm.nih.gov/mapview). These ITSs have been related to chromosomal aberrations, fragile sites, hot spots for recombination and diseases caused by genomic instability, although their functions remain unknown.6Open in a separate windowFigure 1Distribution of the main telomeric repeat arrays in the genome of several model organisms. These representations have been performed by using the megaBLAST program and the all assemblies genomic databases at NCBI (www.ncbi.nlm.nih.gov/mapview). Searches for homology with 100 tandem telomeric repeats were done using the default parameters except that the expected threshold was set to 10 and the filters were turned off. Chromosomes are represented as vertical bars and numbered at the bottom. The horizontal bars represent the telomeric repeat arrays. Colors indicate the BLAST scores (red ≥200; pink 80–200; green 50–80).Telomeres and ITSs have probably cross talk through evolution. In some instances, ITSs could have been generated by telomeric fusions. Pioneering studies performed by Hermann J. Muller in Drosophila and Barbara McClintock in maize showed that newly formed chromosome ends tend to fuse giving rise to the so-called breakage-fusion-bridge cycle.7,8 This cycle can lead to stable chromosomal reorganizations after healing of the broken ends. In addition, Muller and McClintock found that, unlike these newly formed broken chromosome ends, natural chromosomal ends are quite stable and do not tend to fuse.9 It is currently known that telomere dysfunction due to mutations that cause telomeric shortening or abolish the expression of certain telomeric proteins can lead to telomeric fusions, anaphase bridges and genome reorganizations.13,10,11 Therefore, telomeric shortening or alterations of telomeric chromatin structure might be expected to generate ITSs through evolution by promoting telomeric fusions.12 ITSs might also originate through the activity of telomerase during the repair process of double strand breaks or by recombination.1316 In addition, telomerase activity might lead to the formation of new telomeres by healing of chromosome breaks within internal telomeric repeats and even within other sequences.1719 This process of healing involves the acquisition of telomeric chromatin structure.DNA folds into two major chromatin organizations inside the cell nucleus: heterochromatin and euchromatin. Heterochromatin is highly condensed in interphase nuclei and is usually associated with repetitive and silent DNA. By contrast, euchromatin has an open conformation and is often related to the capacity to be transcribed. Both kinds of chromatin exhibit defined epigenetic modifications that influence their biochemical behavior. Thus, the study of these epigenetic marks is an issue of major interest.The chromatin structures of telomeres and ITSs might be different. Therefore, they should be studied independently. Chromatin structure analyses are usually performed by immunocytolocalization or by chromatin immunoprecipitation (ChIP).2023 Special care should be taken when the epigenetic status of telomeres is analyzed by immunocytolocalization. This technique does not allow differentiating between telomeres and subtelomeric regions. Since subtelomeric regions are known to be heterochromatic in many eukaryotic organisms, heterochromatic marks should be immunolocalized at the chromosome ends of these organisms. However, these marks could correspond to subtelomeric regions and not to telomeres.The ChIP technique implies the immunoprecipitation of chromatin with specific antibodies and the further analysis of the immunoprecipitated DNA. DNA sequences immunoprecipitated by a specific antibody are thought to associate in vivo with the feature recognized by this antibody. Whereas the enrichment of single copy sequences in the immunoprecipitated DNA has been usually analyzed by quantitative PCR, the analyses of repetitive DNA sequences have been often performed by hybridization. Thus, multiple telomeric chromatin structure analyses have been performed by hybridizing immunoprecipitated DNA with a telomeric probe. However, these analyses displayed simultaneously the chromatin structures of telomeres and ITSs. High throughput sequencing analyses of the immunoprecipitated DNA might help overcome this problem. Nevertheless, since the reads obtained with these techniques at present are short, it is still difficult to ascertain whether the enrichment of immunoprecipitated telomeric sequences corresponds to telomeres or to ITSs. Third-generation long-read accurate technologies and new algorithms that discriminate between telomeres and ITSs should solve the problem.In principle, the combination of immunocytolocalization and ChIP experiments should help to differentiate between telomeres and ITSs. However, since subtelomeric regions are known to influence telomere function and contain degenerated ITSs, at least in some organisms like humans or Arabidopsis, this may not be necessarily true.6 A specific epigenetic mark might be required for telomere function, found associated with telomeric repeats by ChIP and with the end of chromosomes by immunocytolocalization and still not associate with true telomeres but with subtelomeric regions and ITSs or just with subtelomeric ITSs.An alternative way to analyze the chromatin structure of telomeres by ChIP involves the use of frequently cutting restriction enzymes. The chromatin structures of Arabidopsis telomeres and ITSs have been independently studied by using Tru9I, a restriction enzyme that recognizes the sequence TTAA.24 Since telomeres in Arabidopsis and in other model systems are composed of perfect telomeric repeat arrays, they remain uncut after digestion with Tru9I.25 In contrast, Arabidopsis ITSs are frequently cut because they are composed of short arrays of perfect telomeric repeats interspersed with degenerated repeats.2528 Thus, when Arabidopsis genomic DNA is digested with Tru9I and hybridized with a telomeric probe, most of the signals corresponding to ITSs disappear.25 The use of Tru9I has made possible to discover that Arabidopsis telomeres exhibit euchromatic features. In contrast, Arabidopsis ITSs and subtelomeric regions are heterochromatic.24 In Arabidopsis, heterochromatin is characterized by cytosine methylation, which can be targeted at CpG, CpNpG or CpNpN residues (where N is any nucleotide), and by H3K9me1,2, H3K27me1,2 and H4K20me1. In turn, Arabidopsis euchromatin is characterized by H3K4me1,2,3, H3K36me1,2,3, H4K20me2,3 and by histones acetylation.29 ChIP experiments processed with Tru9I have revealed that Arabidopsis telomeres have high levels of euchromatic marks (H3K4me2, H3K9 and H4K16 acetylation) and low levels of heterochromatic marks (H3K9me2, H3K27me1 and DNA methylation).24 Therefore, Arabidopsis telomeres exhibit epigenetic modifications characteristic of euchromatin.Different studies in mice, humans or Arabidopsis have reported that telomeres are heterochromatic based on the existence of siRNAs containing telomeric sequences, on the association of telomeric sequences with telomeric and with heterochromatin proteins, on the methylation of telomeric sequences or on the histones modifications associated with telomeric sequences.3034 However, the experiments presented in those studies addressed simultaneously the chromatin organizations of telomeres and subtelomeric regions or of telomeres and ITSs. Telomeres have also been reported to be heterochromatic based on the existence of the so-called TElomeric Repeat containing RNAs (TERRA), which are present in different eukaryotes.35 At telomeric regions, TERRA are transcribed from subtelomeric promoters towards chromosome ends. Since human subtelomeric TERRA are mostly composed of subtelomeric sequences, with only about 200 bp of telomeric sequences at their 3′ ends, they might be related to subtelomeric heterochromatin formation rather than to the formation of telomeric chromatin. Nevertheless, TERRA interact with human telomeric proteins and influence telomere function. In addition, TERRA might also be related to ITSs heterochromatinization.34,35We believe that the scenario found in Arabidopsis could also be found in other model systems if the chromatin structures of telomeres, subtelomeric regions and ITSs are independently analyzed. Several reports have described the presence of histone H3.3 at mice telomeres.3639 Since this histone variant has been previously associated with active chromatin, these studies are compatible with a euchromatic organization of telomeres. However, again in these reports, the experiments shown addressed simultaneously the chromatin organization of telomeres and subtelomeric regions or of telomeres and ITSs. In general terms, we believe that a clear distinction between telomeres and ITSs should be established when future ChIP experiments are analyzed. The use of third generation high throughput sequencing technologies or of frequently cutting restriction enzymes might help in this task.As mentioned above, the epigenetic modifications associated with telomeric regions are known to be important for telomere function. These modifications are required to provide genome stability.33 In this context, it will be relevant to ascertain how the function of Arabidopsis telomeres is influenced by their euchromatic marks and by the presence of heterochromatin at subtelomeric regions.  相似文献   

8.
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non‐canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate‐type telomere repeat TTAGGG or Allium genus‐specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non‐canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR‐dCas9‐eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C‐3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis‐like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco‐like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere‐associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.  相似文献   

9.
Cycling cells of Quercus robur have a simple nuclear organization where most of the heterochromatin is visible as DAPI-positive chromocenters, which correspond to DAPI bands at the (peri)centromeric region of each of the 24 chromosomes of the oak complement. Immunofluorescence using 5-mC revealed dispersed distribution of the signal throughout the interphase nucleus/chromosomes without enrichment within DAPI-positive chromocenters/bands, suggesting that DNA methylation was not restricted to constitutive heterochromatin, but was associated with both euchromatic and heterochromatic domains. While H3K9ac exhibited typical euchromatin-specific distribution, the distributional pattern of histone methylation marks H3K9me1, H3K27me2, and H3K4me3 showed some specificity. The H3K9me1 and H3K27me2, both heterochromatin-associated marks, were not restricted to chromocenters, but showed additional dispersed distribution within euchromatin, while H3K27me2 mark also clustered in foci that did not co-localize with chromocenters. Surprisingly, even though H3K4me3 was distributed in the entire chromatin, many chromocenters were enriched with this euchromatin-specific modification. We discuss the distribution of the epigenetic marks in the context of the genome composition and lifestyle of Q. robur.  相似文献   

10.
11.
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next‐generation sequencing (ChIP‐seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3‐containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere‐proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene‐rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3‐depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon‐rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere‐proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.  相似文献   

12.
13.
The epigenetic regulation of mammalian telomeres   总被引:1,自引:0,他引:1  
Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.  相似文献   

14.
Constitutive heterochromatin is enriched in repetitive sequences and histone H3-methylated-at-lysine 9. Both components contribute to heterochromatin's ability to silence euchromatic genes. However, heterochromatin also harbors hundreds of expressed genes in organisms such as Drosophila. Recent studies have provided a detailed picture of sequence organization of D. melanogaster heterochromatin, but how histone modifications are associated with heterochromatic sequences at high resolution has not been described. Here, distributions of modified histones in the vicinity of heterochromatic genes of normal embryos and embryos homozygous for a chromosome rearrangement were characterized using chromatin immunoprecipitation and genome tiling arrays. We found that H3-di-methylated-at-lysine 9 (H3K9me2) was depleted at the 5' ends but enriched throughout transcribed regions of heterochromatic genes. The profile was distinct from that of euchromatic genes and suggests that heterochromatic genes are integrated into, rather than insulated from, the H3K9me2-enriched domain. Moreover, the profile was only subtly affected by a Su(var)3-9 null mutation, implicating a histone methyltransferase other than SU(VAR)3-9 as responsible for most H3K9me2 associated with heterochromatic genes in embryos. On a chromosomal scale, we observed a sharp transition to the H3K9me2 domain, which coincided with increased retrotransposon density in the euchromatin-heterochromatin (eu-het) transition zones on the long chromosome arms. Thus, a certain density of retrotransposons, rather than specific boundary elements, may demarcate Drosophila pericentric heterochromatin. We also demonstrate that a chromosome rearrangement that created a new eu-het junction altered H3K9me2 distribution and induced new euchromatic sites of enrichment as far as several megabases away from the breakpoint. Taken together, the findings argue against simple classification of H3K9me as the definitive signature of silenced genes, and clarify roles of histone modifications and repetitive DNAs in heterochromatin. The results are also relevant for understanding the effects of chromosome aberrations and the megabase scale over which epigenetic position effects can operate in multicellular organisms.  相似文献   

15.
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.  相似文献   

16.
17.
18.
Epigenetic indexing of chromatin domains by histone lysine methylation requires the balanced coordination of methyltransferase and demethylase activities. Here, we show that SU(VAR)3-3, the Drosophila homolog of the human LSD1 amine oxidase, demethylates H3K4me2 and H3K4me1 and facilitates subsequent H3K9 methylation by SU(VAR)3-9. Su(var)3-3 mutations suppress heterochromatic gene silencing, display elevated levels of H3K4me2, and prevent extension of H3K9me2 at pericentric heterochromatin. SU(VAR)3-3 colocalizes with H3K4me2 in interband regions and is abundant during embryogenesis and in syncytial blastoderm, where it appears concentrated at prospective heterochromatin during cycle 14. In embryos of Su(var)3-3/+ females, H3K4me2 accumulates in primordial germ cells, and the deregulated expansion of H3K4me2 antagonizes heterochromatic H3K9me2 in blastoderm cells. Our data indicate an early developmental function for the SU(VAR)3-3 demethylase in controlling euchromatic and heterochromatic domains and reveal a hierarchy in which SU(VAR)3-3-mediated removal of activating histone marks is a prerequisite for subsequent heterochromatin formation by H3K9 methylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号