首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of individual characteristics and contextual factors on training load, pre-game recovery and game performance in adult male semi-professional basketball. Fourteen players were monitored, across a whole competitive season, with the session-RPE method to calculate weekly training load, and the Total Quality Recovery Scale to obtain pre-game recovery scores. Additionally, game-related statistics were gathered during official games to calculate the Performance Index Rating (PIR). Individual characteristics and contextual factors were grouped using k-means cluster analyses. Separate mixed linear models for repeated measures were performed to evaluate the single and combined (interaction) effects of individual characteristics (playing experience; playing position; playing time) and contextual factors (season phase; recovery cycle; previous game outcome; previous and upcoming opponent level) on weekly training load, pre-game recovery and PIR. Weekly load was higher in guards and medium minute-per-game (MPG) players, and lower for medium-experienced players, before facing high-level opponents, during later season phases and short recovery cycles (all p < 0.05). Pre-game recovery was lower in centers and high-experience players (p < 0.05). Game performance was better in high-MPG players (p < 0.05) and when facing low and medium-level opponents (p < 0.001). Interestingly, players performed better in games when the previous week’s training load was low (p = 0.042). This study suggests that several individual characteristics and contextual factors need to be considered when monitoring training load (playing experience, playing position, playing time, recovery cycle, upcoming opponent level), recovery (playing experience, playing position) and game performance (opponent level, weekly training load, pre-game recovery) in basketball players during the competitive season.  相似文献   

2.
The aims of this study were (i) to describe the relative intensity of simulated tennis play based on the cumulative time spent in three metabolic intensity zones, and (ii) to determine the relationships between this play intensity distribution and the aerobic fitness of a group of competitive players. 20 male players of advanced to elite level (ITN) performed an incremental on-court specific endurance tennis test to exhaustion to determine maximal oxygen uptake (VO2max) and the first and second ventilatory thresholds (VT1, VT2). Ventilatory and gas exchange parameters were monitored using a telemetric portable gas analyser (K4 b2, Cosmed, Rome, Italy). Two weeks later the participants played a simulated tennis set against an opponent of similar level. Intensity zones (1: low, 2: moderate, and 3: high) were delimited by the individual VO2 values corresponding to VT1 and VT2, and expressed as percentage of maximum VO2 and heart rate. When expressed relative to VO2max, percentage of playing time in zone 1 (77 ± 25%) was significantly higher (p < 0.001) than in zone 2 (20 ± 21%) and zone 3 (3 ± 5%). Moderate to high positive correlations were found between VT1, VT2 and VO2max, and the percentage of playing time spent in zone 1 (r = 0.68–0.75), as well as low to high inverse correlations between the metabolic variables and the percentage of time spent in zone 2 and 3 (r = -0.49–0.75). Players with better aerobic fitness play at relatively lower intensities. We conclude that players spent more than 75% of the time in their low-intensity zone, with less than 25% of the time spent at moderate to high intensities. Aerobic fitness appears to determine the metabolic intensity that players can sustain throughout the game.  相似文献   

3.
The purpose of this study was to compare physical demands during the most demanding scenarios (MDS) of different training sessions and official matches in professional basketball players across playing positions. Thirteen professional basketball players were monitored over a 9-week competitive season using a local positioning system. Peak physical demands included total distance, distance covered at > 18 km·h-1, distance and number of accelerations (≥ 2 m∙s-2) and decelerations (≤ -2 m∙s-2) over a 60-second epoch. Analysis of variance for repeated measures, Bonferroni post-hoc tests and standardised Cohen’s effect size (ES) were calculated. Overall, almost all physical demands during the MDS of training were lower (-6.2% to -35.4%) compared to official matches. The only variable that surpassed competition demands was distance covered at > 18 km·h-1, which presented moderate (ES = 0.61, p = 0.01) and small (ES = 0.48, p > 0.05) increases during training sessions four and three days before a competition, respectively. Conversely, the two previous practices before match day presented trivial to very large decreases (ES = 0.09–2.66) in all physical demands. Furthermore, centres achieved the lowest peak value in total distance covered during matches, forwards completed the greatest peak distance at > 18 km·h-1, and guards performed the greatest distance and number of high-intensity accelerations and decelerations. In conclusion, physical demands during the MDS of different training sessions across the microcycle failed to match or surpass peak values during official matches, which should be considered when prescribing a training process intended to optimise the MDS of match play.  相似文献   

4.
The aim of the present study is to analyse the influence of different large-sided games (LSGs) on the physical and physiological variables in under-12s (U12) and -13s (U13) soccer players. The effects of the combination of different number of players per team, 7, 9, and 11 (P7, P9, and P11, respectively) with three relative pitch areas, 100, 200, and 300 m2 (A100, A200, and A300, respectively), were analysed in this study. The variables analysed were: 1) global indicator such as total distance (TD); work:rest ratio (W:R); player-load (PL) and maximal speed (Vmax); 2) heart rate (HR) mean and time spent in different intensity zones of HR (<75%, 75–84%, 84–90% and >90%), and; 3) five absolute (<8, 8–13, 13–16 and >16 Km h-1) and three relative speed categories (<40%, 40–60% and >60% Vmax). The results support the theory that a change in format (player number and pitch dimensions) affects no similarly in the two players categories. Although it can seem that U13 players are more demanded in this kind of LSG, when the work load is assessed from a relative point of view, great pitch dimensions and/or high number of player per team are involved in the training task to the U12 players. The results of this study could alert to the coaches to avoid some types of LSGs for the U12 players such as: P11 played in A100, A200 or A300, P9 played in A200 or A300 and P7 played in A300 due to that U13>U12 in several physical and physiological variables (W:R, time spent in 84–90%HRmax, distance in 8–13 and 13–16 Km h-1 and time spent in 40–60%Vmax). These results may help youth soccer coaches to plan the progressive introduction of LSGs so that task demands are adapted to the physiological and physical development of participants.  相似文献   

5.
The aims of this study were to: (a) describe and compare the volume and intensity from the workload of professional soccer players between training and MD, and (b) analyse the effect that the length of the microcycle had on the workload. A cohort study was designed for a full season in La Liga 123. Wearable tracking systems collected the distance covered in meters (m), total number of high-intensity accelerations (ACCHIGH) and decelerations (DECHIGH), total number of high-speed running actions (HSRA), high-speed running distance (HSRD), high metabolic load distance (HMLD), and player load (PL) from training days (MD+1, MD-4, MD-3, MD-2, and MD-1) and MD. Significant differences were found between training and MD workload, MD workload being the most demanding for all intensity and volume variables (F = 36.35–753.94; p < 0.01; wp2 = 0.21–0.85). The greatest training intensity and volume were found on MD-4 and MD-3 (p < 0.05). In addition, a novel finding was that the length of the microcycle had a significant effect on the workload both in volume and intensity (F = 4.84–14.19; p < 0.01; wp2 = 0.03–0.09), except for relative ACCHIGH, DECHIGH, and HMLD. Although MD-4 and MD-3 were the most suitable days for loading the players, the results showed that MD elicited a unique stimulus in terms of volume and intensity. Consequently, coaches need to include specific training drills to adapt the players for the competitive demands. Finally, special focus should be placed on MD from short and regular microcycles (5-day, 6-day, or 7-day microcycles) since declines in physical performance were observed in comparison with long microcycles (8-day or 9-day microcycles).  相似文献   

6.
Monitoring workload is critical for elite training and competition, as well as preventing potential sports injuries. The assessment of external load in team sports has been provided with new technologies that help coaches to individualize training and optimize their team’s playing system. In this study we characterized the physical demands of an elite handball team during an entire sports season. Novel data are reported for each playing position of this highly strenuous body-contact team sport. Sixteen world top players (5 wings, 2 centre backs, 6 backs, 3 line players) were equipped with a local positioning system (WIMU PRO) during fourteen official Spanish first league matches. Playing time, total distance covered at different running speeds, and acceleration variables were monitored. During a handball match, wings cover the greater distance by high-speed running (> 5.0 m·s-1): 410.3 ± 193.2 m, and by sprint (> 6.7 m·s-1): 98.0 ± 75.4 m. Centre backs perform the following playing position that supports the highest speed intensities during the matches: high-speed running: 243.2 ± 130.2 m; sprint: 62.0 ± 54.2 m. Centre backs also register the largest number of high-intensity decelerations (n = 142.7 ± 59.5) compared to wings (n = 112.9 ± 56.0), backs (n = 105.2 ± 49.2) and line players: 99.6 ± 28.9). This study provides helpful information for professional coaches and their technical staff to optimize training load and individualize the physical demands of their elite male handball players depending on each playing position.  相似文献   

7.
A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mL∙kg-1∙min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1∙min-1) performed a discontinuous submaximal running test to determine running economy (kcal∙km-1). A continuous incremental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 participants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; P<0.006), in addition to moderate positive relationships between the changes in running economy and V̇O2max in response to habitual training (r = 0.35; P<0.001). In conclusion, the current investigation demonstrates that only a small to moderate relationship exists between running economy and V̇O2max in highly trained distance runners. With >85% of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently.  相似文献   

8.
This study compared the movement demands of elite international Under-20 age grade (U20s) and senior international rugby union players during competitive tournament match play. Forty elite professional players from an U20 and 27 elite professional senior players from international performance squads were monitored using 10Hz global positioning systems (GPS) during 15 (U20s) and 8 (senior) international tournament matches during the 2014 and 2015 seasons. Data on distances, velocities, accelerations, decelerations, high metabolic load (HML) distance and efforts, and number of sprints were derived. Data files from players who played over 60 min (n = 258) were separated firstly into Forwards and Backs, and more specifically into six positional groups; FR–Front Row (prop & hooker), SR–Second Row, BR–Back Row (Flankers & No.8), HB–Half Backs (scrum half & outside half), MF–Midfield (centres), B3 –Back Three (wings & full back) for match analysis. Linear mixed models revealed significant differences between U20 and senior teams in both the forwards and backs. In the forwards the seniors covered greater HML distance (736.4 ± 280.3 vs 701.3 ± 198.7m, p = 0.01) and severe decelerations (2.38 ± 2.2 vs 2.28 ± 1.65, p = 0.05) compared to the U20s, but performed less relative HSR (3.1 ± 1.6 vs 3.2 ± 1.5, p < 0.01), moderate (19.4 ± 10.5 vs 23.6 ± 10.5, p = 0.01) and high accelerations (2.2 ± 1.9 vs 4.3 ± 2.7, p < 0.01) and sprint•min-1 (0.11 ± 0.06 vs 0.11 ± 0.05, p < 0.01). Senior backs covered a greater relative distance (73.3 ± 8.1 vs 69.1 ± 7.6 m•min-1, p < 0.01), greater High Metabolic Load (HML) distance (1138.0 ± 233.5 vs 1060.4 ± 218.1m, p < 0.01), HML efforts (112.7 ± 22.2 vs 98.8 ± 21.7, p < 0.01) and heavy decelerations (9.9 ± 4.3 vs 9.5 ± 4.4, p = 0.04) than the U20s backs. However, the U20s backs performed more relative HSR (7.3 ± 2.1 vs 7.2 ± 2.1, p <0.01) and sprint•min-1 (0.26 ± 0.07 vs 0.25 ± 0.07, p < 0.01). Further investigation highlighted differences between the 6 positional groups of the teams. The positional groups that differed the most on the variables measured were the FR and MF groups, with the U20s FR having higher outputs on HSR, moderate & high accelerations, moderate, high & severe decelerations, HML distance, HML efforts, and sprints•min-1. For the MF group the senior players produced greater values for relative distance covered, HSR, moderate decelerations, HML distance and sprint•min-1. The BR position group was most similar with the only differences seen on heavy accelerations (U20s higher) and moderate decelerations (seniors higher). Findings demonstrate that U20s internationals appear to be an adequate ‘stepping stone’ for preparing players for movement characteristics found senior International rugby, however, the current study highlight for the first time that certain positional groups may require more time to be able to match the movement demands required at a higher playing level than others. Conditioning staff must also bear in mind that the U20s players whilst maintaining or improving match movement capabilities may require to gain substantial mass in some positions to match their senior counterparts.  相似文献   

9.
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.  相似文献   

10.
The aim of this study was to provide reference data of variation in external training loads for weekly periods within the annual season. Specifically, we aimed to compare the weekly acute load, monotony, and training strain of accelerometry-based measures across a professional soccer season (pre-season, first and second halves of the season) according to players’ positions. Nineteen professional players were monitored daily for 45 weeks using an 18-Hz global positioning system to obtain measures of high metabolic load distance (HMLD), impacts, and high intensity accelerations and decelerations. Workload indices of acute load, training monotony, and training strain were calculated weekly for each of the measures. The HMLD had greater training strain values in the pre-season than in the first (p ≤ 0.001; d = 0.793) and second halves of the season (p ≤ 0.001; d = 0.858). Comparisons between playing positions showed that midfielders had the highest weekly acute load of HMLD (6901 arbitrary units [AU]), while central defenders had the lowest (4986 AU). The pre-season period was associated with the highest acute and strain load of HMLD and number of impacts, with a progressive decrease seen during the season. In conclusion, coaches should consider paying greater attention to variations in HMLD and impacts between periods of the season and between players to individualize training accordingly.  相似文献   

11.
The aim of this study was to compare the acute physiological (i.e., heart rate-related variables) and neuromuscular responses (i.e., sprint and jump) and time-motion characteristics (i.e., external load variables) when modifying the game design (possession play vs. mini-goals without a goalkeeper) during 4-a-side in amateur senior football players. Male senior football players (n = 16) performed two formats of small-sided games (SSGs) in two different testing sessions (4-a-side with possession play and mini-goals rule). Differences in time-motion characteristics and physiological parameters of players were measured with the Global Positioning System (GPS), and tested before and after (pre- and post-SSG) for neuromuscular assessment. A repeated measures analysis of variance (ANOVA), with Bonferroni post-hoc test, showed that both SSG formats induced changes in sprint performance (before-after comparison) (p ≤ 0.05). Moreover, the results showed that the variables muscle oxygen saturation, rate of perceived exertion, 85–89% heart rate peak, total distance, total distances at low speed, total distances at high speed, m/min, accelerations at low speed, accelerations of ≥ 2.5 m.s-2, maximal speed, and average speed were statistically significantly different among game conditions. The players’ performances are affected by the inclusion of mini-goals during 4 vs. 4 SSGs. The results provide useful information for training and task design that replicate specific physical demands (i.e., accelerations of ≥ 2.5 m.s-2, total distances at high speed or total distances at low speed).  相似文献   

12.
13.
The study aimed to compare the physical demands required during the first, second, and third most demanding passages (MDP) of play considering the effect of playing position, type of passage, and passage duration. A longitudinal study for three mesocycles was conducted in a professional soccer team competing in LaLiga123. Tracking systems collected total distance covered (DIS), high-speed running distance (HSRD), sprinting distance (SPD), total of high-intensity accelerations (ACCHIGH), and total of high-intensity decelerations (DECHIGH). The results confirmed that a significant effect of the type of passage (first, second or third MDP of play) on DIS (F(1.24, 178.89) = 115.53; p = 0.01; ηp2 = 0.45), HSRD (F(1.35, 195.36) = 422.82; p = 0.01; ηp2 = 0.75), SPD (F(1.43, 206.59) = 299.99; p = 0.01; ηp2 = 0.68), ACCHIGH (F(1.45, 209.38) = 268.59; p = 0.01; ηp2 = 0.65), and DECHIGH (F(1.45, 209.38) = 324.88; p = 0.01; ηp2 = 0.69) was found. In addition, a significant interaction between playing position, type and duration of the passage was observed in DIS (F(12.60, 453.47) = 1.98; p = 0.02; ηp2 = 0.05) and ACCHIGH (F(13.99, 503.78) = 1.92; p = 0.03; ηp2 = 0.06). In conclusion, significant differences in physical demands between the first, second, and third MDP of play were observed. However, there were some cases (DIS and ACCHIGH) in which no significant differences were found between these passages. Therefore, coaches should consider not only the magnitude of these peak intensity periods (e.g., distance covered per minute) but also the number of passages that players may experience during match play.  相似文献   

14.
The aim of this study was to measure the heart rate (HR) response of eight elite water polo players during the four 7-min quarters of the game and to check for relationships with the physiological parameters of performance (V.O2max, Th1vent, Th2vent). Each athlete performed a V.O2max treadmill test and played a water polo game wearing a heart rate monitor. The game fatigue index was calculated as the ratio of the fourth-quarter HR to the first-quarter HR: HR4/HR1. The results showed a slight decrease in fourth-quarter HR compared with the first quarter, with the mean four-quarter HR equal to 79.9±4.2% of HRmax. Stepwise multiple regression analysis showed V.O2max to be the main explanatory factor of game intensity, i.e. game HR expressed in %HRreserve (R=0.88, P<0.01). We observed that higher aerobic capacity resulted in higher game intensity. We also observed a decrease in the playing intensity in the fourth quarter compared with the first, likely due to very high game involvement. We concluded that high aerobic capacity seems necessary to ensure high game intensity in water polo. This suggests that coaches should encourage their athletes to reach a minimum level of V.O2max and that HR monitoring could be of great interest in the control of water polo training sessions.  相似文献   

15.
This study aimed to compare the effects of 8-week self-paced high-intensity interval training (HIIT) vs. self-paced moderate-intensity continuous training (MICT) on the physical performance and psychophysiological responses of young adults. Twenty-eight recreationally active young adults (age: 21.1 ± 1.6 years) were randomly assigned to either the self-paced HIIT (n = 14) or the MICT (n = 14) group training protocol. The HIIT consisted of two 12–24 x 30 seconds of high-intensity runs interspersed by 30 seconds of recovery. The MICT completed 24–48 minutes of continuous running. Before and after the 8-week interventions the following tests were completed: maximum oxygen consumption (V̇O2max) estimated from the Yo-Yo Intermittent Recovery Test level 1 (YYIRTL-1), repeated sprint ability (RSA), 10–30-m sprint test, change of direction test (T-drill), countermovement jump (CMJ) and squat jump (SJ), and triple hop distance test (THD). Training rating of perceived exertion (RPE) and physical activity enjoyment scale (PACES) were assessed during the training programme. The HIIT resulted in greater improvement in YYIRTL-1, V̇O2max, RSA and T-drill performances compared to the MICT. Furthermore, RPE and PACES values were higher in the HIIT than the MICT. This study suggested that self-paced HIIT may be a more effective training regime to improve aerobic fitness with greater physical enjoyment in recreationally active young adults.  相似文献   

16.
17.

Objective

To describe different end criteria for reaching maximal oxygen uptake (VO2max) during a continuous graded exercise test on the treadmill, and to explore the manner by which different end criteria have an impact on the magnitude of the VO2max result.

Methods

A sample of 861 individuals (390 women) aged 20–85 years performed an exercise test on a treadmill until exhaustion. Gas exchange, heart rate, blood lactate concentration and Borg Scale6–20 rating were measured, and the impact of different end criteria on VO2max was studied;VO2 leveling off, maximal heart rate (HRmax), different levels of respiratory exchange ratio (RER), and postexercise blood lactate concentration.

Results

Eight hundred and four healthy participants (93%) fulfilled the exercise test until voluntary exhaustion. There were no sex-related differences in HRmax, RER, or Borg Scale rating, whereas blood lactate concentration was 18% lower in women (P<0.001). Forty-two percent of the participants achieved a plateau in VO2; these individuals had 5% higher ventilation (P = 0.033), 4% higher RER (P<0.001), and 5% higher blood lactate concentration (P = 0.047) compared with participants who did not reach a VO2 plateau. When using RER ≥1.15 or blood lactate concentration ≥8.0 mmol•L–1, VO2max was 4% (P = 0.012) and 10% greater (P<0.001), respectively. A blood lactate concentration ≥8.0 mmol•L–1 excluded 63% of the participants in the 50–85-year-old cohort.

Conclusions

A range of typical end criteria are presented in a random sample of subjects aged 20–85 years. The choice of end criteria will have an impact on the number of the participants as well as the VO2max outcome. Suggestions for new recommendations are given.  相似文献   

18.
This study aimed to analyse the influence of different contextual factors (i.e., defensive style and game outcome) on basketball players’ external load during games-based drills using ultrawideband (UWB) technology. Fourteen male professional basketball players belonging to an elite reserve Spanish club (ACB) participated in this study. The games-based drills consisted of one bout of 10 min played 5vs5 in which players were instructed to use man-to-man defence (MMD) and/or zone defence (ZD). In addition, the final game outcome (i.e., winning or losing) of the game-based drill was registered. External load variables per minute were recorded: total distance covered, distance covered in different speed zones, distance covered while accelerating and decelerating, maximum speed, steps, jumps and player load. A two-way ANOVA with the Tukey post hoc test was used to assess the impact of defensive style and final game outcome and the interaction of both factors on the external load encountered by basketball players. No meaningful differences (unclear) were found in the external loads between playing with MMD and with ZD and between winning and losing teams except for greater distance at high-speed running (18.0–24.0 km·h-1) in winning teams (p < 0.05, ES = 0.68, moderate). A significant interaction between defensive style and final game outcome was found for high decelerations (> -2 m·s-2) (p = 0.041; ES = 0.70) and jumps (p = 0.037; ES = 0.68). These results could potentially help coaching staff in prescribing an appropriate workload during basketball-specific game-based drills, and ultimately enhance the match performance.  相似文献   

19.
Ice hockey has the highest rates for concussion among team sports in Canada. In elite play, the most common mechanism is impact to the head by an opposing player’s upper limb, with shoulder-to-head impacts accounting for twice as many concussions as elbow- and hand-to-head impacts combined. Improved understanding of the biomechanics of head impacts in hockey may inform approaches to prevention. In this study, we measured the magnitude and duration of linear and rotational head accelerations when hockey players (n = 11; aged 21–25) delivered checks “as hard as comfortable” to the head of an instrumented dummy with their shoulder, elbow and hand. There were differences in both peak magnitude and duration of head accelerations across upper limb impact sites, based on repeated-measures ANOVA (p < 0.005). Peak linear head accelerations averaged 1.9-fold greater for hand and 1.3-fold greater for elbow than shoulder (mean values = 20.35, 14.23 and 10.55 g, respectively). Furthermore, peak rotational head accelerations averaged 2.1-fold greater for hand and 1.8-fold greater for elbow than shoulder (1097.9, 944.1 and 523.1 rad/s2, respectively). However, times to peak linear head acceleration (a measure of the duration of the acceleration impulse) were 2.1-fold longer for shoulder than elbow, and 2.5-fold longer for shoulder than hand (12.26, 5.94 and 4.98 ms, respectively), and there were similar trends in the durations of rotational head acceleration. Our results show that, in body checks to the head delivered by varsity-level hockey players, shoulder-to-head impacts generated longer durations but lower magnitude of peak head acceleration than elbow- and hand-to-head impacts.  相似文献   

20.
The purpose of this study was to examine physiological and physical determinants of ice-hockey performance in order to assess their impact on the result during a selection for ice hockey. A total of 42 ice hockey players took part in the selection camp. At the end of the camp 20 best players were selected by team of expert coaches to the ice hockey team and created group G1, while the second group (G2) consisted of not selected players (non-successful group Evaluation of goodness of fit of the model to the data was based on the Hosmer Lemeshow test. Ice hockey players selected to the team were taller 181.95±4.02 cm, had lower% body fat 13.17±3.17%, a shorter time to peak power 2.47±0.35 s, higher relative peak power 21.34±2.41 W·kg−1 and higher relative total work 305.18±28.41 J·kg−1. The results of the aerobic capacity test showed significant differences only in case of two variables. Ice hockey players in the G1 had higher VO2max 4.07±0.31 l·min−1 values than players in the G2 as well as ice hockey players in G1 showed a higher level of relative VO2max 51.75±2.99 ml·min−1·kg−1 than athletes in G2. Ice hockey players selected to the team (G1) performed better in the 30 m Forwards Sprint 4.28±0.31 s; 6x9 Turns 12.19±0.75 s; 6x9 stops 12.79±0.49 s and Endurance test (6x30 m stops) 32.01±0.80 s than players in G2. The logistic regression model showed that the best predictors of success in the recruitment process of top level ice hockey players were time to peak power, relative peak power, VO2max and 30 m sprint forwards on ice. On the basis of the constructed predictive logistic regression model it will be possible to determine the probability of success of the athletes during following the selection processes to the team.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号