首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study was designed to compare the effectiveness of small-sided handball games in combination with handball training (SSG group) versus high-intensity interval training in combination with handball training (HIIT group) on physical performance of young female handball players during pre-competitive period. Twenty-four young female handball players, who have a 6.17 ± 1.54 years training experience and competition in the national league participated in this study. SSG group (n = 12; age 16.06 ± 0.80 years, body mass 61.27 ± 3.68 kg, body height 1.64 ± 4.7 m, body mass index 22.7 kg/m2) while HIIT group (n = 12; 16.20 ± 1.28 years, body mass 62.46 ± 7.86 kg, body height 1.68 ± 6.8 m, body mass index 22 kg/m2). Both groups applied training programs twice-a-week for 8 weeks. Before and after the training programs physical performances were assessed: Countermovement jump (CMJ), Squat jump (SJ), Sprint on 0–10 m; Sprint on 0–20 m; Sprint on 0–30 m, Throwing medicine ball and total distance covered during the Yo-YoIRT1. After 8 weeks SSG and HIIT groups significantly improved CMJ, SJ, 0–20 m sprint, 0–30 m sprint, throwing medicine ball and Yo-YoIRT1 (p ≤ 0.05). However, significantly greater improvement was achieved in Yo-YoIRT1 (m) in HIIT group (28.40%) than SSG group (17.63%). These results indicate that SSG group and HIIT group equally improve of physical performances (jump, sprint and upper explosive strength) among young female handball players in pre-competitive period.  相似文献   

2.
This study examined the effect of a 10-week programme of strength training with elastic band (STEB) on fitness components in young female handball players. Twenty-six young female handball players (aged 15.8 ± 0.2 years) from the same club participated in this study. They were randomly assigned between experimental (EG; n = 13) and control (CG; n = 13) groups. The EG performed the STEB, replacing some handball-specific drills in the regular handball training. The CG followed the regular handball training (i.e., mainly technical-tactical drills, small sided and simulated games, and injury prevention drills). Two-way analyses of variance were used to assess: handgrip; back extensor strength; medicine ball throw; 30 m sprint times; Modified Illinois change-of-direction (Illinois-MT); four jump tests: squat jump (SJ), countermovement jump (CMJ), countermovement jump with arm swing (CMJA) and five-jump test (5JT); static (Stork test) and dynamic balance (Y Balance Test); and repeated sprint T-test (RSTT). Results revealed significant gains in handgrip - right (p < 0.001, d = 1.75: large), handgrip - left (p < 0.001, d = 2.52: large), back extensor (p < 0.001, d = 2.01: large), and medicine ball throw (p = 0.002, d = 0.95: large) with EG compared to the CG. The EG also demonstrated greater improvement in sprint performance over 20 m (Δ = 10.6%, p = 0.001, d = 1.07: large) and 30 m (Δ = 7.2%, p < 0.0001, d = 1.56: large) compared to the CG. The EG showed better Illinois-MT (Δ = 5.6%, p = 0.034, d = 0.62: medium) compared to the CG. Further, EG posted significant improvements in the SJ (Δ = 17.3%, p = 0.048, d = 0.58: medium), CMJ (Δ = 17.7%, p = 0.017 d = 0.71: medium), and CMJA (Δ = 16.3%, p = 0.019, d = 0.69: medium) compared to the CG. Similarly, the EG exhibited significant improvement in RSTT best time [p = 0.025, d = 0.66 (medium)], RSTT mean time [p = 0.019, d = 0.69 (medium)] and RSTT total time [p = 0.019, d = 0.69 (medium)] compared to the CG. In conclusion, the 10-week STEB improved the physical abilities in young female handball players.  相似文献   

3.
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors.  相似文献   

4.
Combined interventions of pool-based and dry-land workouts are a common practice in swimming training. However, the effects on strength, technique and swimming performance are still not clear. Through a randomized controlled trial study, we investigated the effect of combining high intensity interval training (HIIT) and maximum strength training (MST) on strength, technique and 100-m butterfly swimming performance. Competitive age-group swimmers (N = 22, males) were randomly divided into two groups. The experimental group (EG: 14.1 ± 0.3 years old) performed 8 weeks of combined short-moderate HIIT and MST. The control group (CG: 14.5 ± 0.3 years old) subjects performed their usual training. Muscular strength, technique and swimming performance were evaluated before and after 8 weeks. Substantial improvements were observed in maximum muscle strength (mean diff: 22–28%; p < 0.001; d = 3.25–3.61), technique (p < 0.05; d = 0.98–1.96) and 100-m butterfly swimming performance (3.5%; p = 0.001; d = 1.81) when combining HIIT and MST during 8 weeks. Combining short-moderate HIIT and MST during 8 weeks can enhance maximum muscular strength, technique, and 100-m butterfly swimming performance. Coaches should adjust training programmes accordingly since it could yield important differences in swimming performance during competitions.  相似文献   

5.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

6.
The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups, of which sixty-four completed the study: a soccer training group (SOC; n = 20, 34±4 (means±SD) years, 78.1±8.3 kg, 179±4 cm); a running group (RUN; n = 21, 32±4 years, 78.0±5.5 kg, 179±7 cm); or a passive control group (CON; n = 23, 30±3 years, 76.6±12.0 kg, 178±8 cm). The training intervention lasted 12 weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body composition. Over the 12 weeks, VO2max relative to body weight increased more (p<0.05) in SOC (24.2%, ES = 1.20) and RUN (21.5%, ES = 1.17) than in CON (-5.0%, ES = -0.24), partly due to large changes in body mass (-5.9, -5.7 and +2.6 kg, p<0.05 for SOC, RUN and CON, respectively). Over the 12 weeks, SJ and CMJ performance increased more (p<0.05) in SOC (14.8 and 12.1%, ES = 1.08 and 0.81) than in RUN (3.3 and 3.0%, ES = 0.23 and 0.19) and CON (0.3 and 0.2%), while flexibility also increased more (p<0.05) in SOC (94%, ES = 0.97) than in RUN and CON (0–2%). In conclusion, untrained men displayed marked improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training intervention.  相似文献   

7.
This study investigated the effects of a ballistic training programme using an arm/shoulder specific strength device (ASSSD) on the upper body peak power (PP), muscle volume (MV) of the dominant arm and throwing velocity in junior handball players. Twenty-six players were randomly assigned to an experimental (EG = 15, age 17.6 ± 0.51 years) and control (CG = 11, age 17.36 ± 0.50 years) group. Over an 8-week in-season period, the EG performed a ballistic training programme (2 sessions/week) immediately before their normal team handball training. Both groups underwent tests on the ASSSD, which operates in consecutive accelerative and decelerative actions, for throwing characteristics determination. Peak power (PP), peak force (PF), peak velocity (PV), peak rate of power development (PRPD), muscle volume (MV), throwing velocity with runup, standing throw, and jump throw were also assessed before/after the training programme. The EG group showed significant post-training improvements in PP (52.50% – p < 0.001), PF (26.45% – p < 0.01) and PRPD (78.47% – p < 0.001) better than the CG (1.81, 0.67 and 1.64%, p > 0.05, respectively). There was also a post-training improvement in the velocity at PP (22.82% – p < 0.001) and PF (42.45% – p < 0.001) in the EG compared to the CG (4.18 and 8.53%, p > 0.05 respectively). There was a significant increase in acceleration at PP (51.50% – p < 0.01) and PF (69.67% – p < 0.001). MV increased (19.11% – p < 0.001) in the EG, with no significant change (3.34% – p = 0.84) in the CG. Finally, significant increases were obtained in the three throw types (3.1–6.21%, p < 0.05- < 0.001) in the EG compared to the CG. The additional ASSSD training protocol was able to improve muscle strength/volume and ball throwing velocity in junior handball players.  相似文献   

8.
The purpose of this investigation was to examine the combined effects of resistance and sprint/plyometric training with or without the Meridian Elyte athletic shoe on muscular performance in women. Fourteen resistance-trained women were randomly assigned to one of 2 training groups: (a) an athletic shoe (N = 6) (AS) group or (b) the Meridian Elyte (N = 8) (MS) group. Training was performed for 10 weeks and consisted of resistance training for 2 days per week and 2 days per week of sprint/plyometric training. Linear periodized resistance training consisted of 5 exercises per workout (4 lower body, 1 upper body) for 3 sets of 3-12 repetition maximum (RM). Sprint/plyometric training consisted of 5-7 exercises per workout (4-5 plyometric exercises, 40-yd and 60-yd sprints) for 3-6 sets with gradually increasing volume (8 weeks) followed by a 2-week taper phase. Assessments for 1RM squat and bench press, vertical jump, broad jump, sprint speed, and body composition were performed before and following the 10-week training period. Significant increases were observed in both AS and MS groups in 1RM squat (12.0 vs. 14.6 kg), bench press (6.8 vs. 7.4 kg), vertical jump height (3.3 vs. 2.3 cm), and broad jump (17.8 vs. 15.2 cm). Similar decreases in peak 20-, 40-, and 60-m sprint times were observed in both groups (20 m: 0.14 vs. 0.11 seconds; 40 m: 0.29 vs. 0.34 seconds; 60 m: 0.45 vs. 0.46 seconds in AS and MS groups, respectively). However, when sprint endurance (the difference between the fastest and slowest sprint trials) was analyzed, there was a significantly greater improvement at 60 m in the MS group. These results indicated that similar improvements in peak sprint speed and jumping ability were observed following 10 weeks of training with either shoe. However, high-intensity sprint endurance at 60 m increased to a greater extent during training with the Meridian Elyte athletic shoe.  相似文献   

9.
The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.  相似文献   

10.
The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.  相似文献   

11.
The aim of this study was to investigate the response to non-tackle and tackle field-based training on upper- and lower-limb neuromuscular function in elite rugby union players. Nine elite senior elite rugby union players (mean age = 21 ± 2 years; height = 184 ± 7 cm; body mass 91.0 ± 9 kg) were evaluated before and immediately following 17 training sessions. A total of 306 assessments were performed. Data on neuromuscular function of plyometric push-up and countermovement jump were calculated from force signals using inverse dynamics. The change from pre- to post-session was investigated across non-tackle and tackle training using a linear mixed model. Considering upper-limb neuromuscular function, peak concentric power [P = 0.024; ES = 0.33 95%CI (0.04, 0.62)] was significantly lower after tackle compared to non-tackle training. In addition, peak countermovement jump eccentric power was significantly lower after non-tackle compared to tackle training [P = 0.044; ES = -0.4 95%CI (-0.69, -0.1)] in lower-limb neuromuscular function. Overall, the results indicated that the type of training influences upper- and lower-limb neuromuscular function differently immediately after training. Indeed, due to physical contact, the upper-body neuromuscular function increased during tackle training. In contrast, lower-body neuromuscular function emerged only in non-tackle training, due to the greater distance covered during this type of training session. Coaches and practitioners should plan adequate weekly training sessions according to this information.  相似文献   

12.
This study examined the acute and long-term effects of two static stretching protocols of equal duration, performed either as a single stretch or multiple shorter duration repetitions on hip hyperextension range of motion (ROM) and single leg countermovement jump height (CMJ). Thirty female gymnasts were randomly assigned to stretching (SG) or control groups (CG). The SG performed two different protocols of static stretching, three times per week for 9 weeks. One leg performed repeated stretching (3 × 30 s with 30 s rest) while the other leg performed a single stretch (90 s). The CG continued regular training. ROM and CMJ were measured pre- and 2 min post-stretching on weeks 0, 3, 6, 9, and 3 weeks into detraining. CMJ height increased over time irrespective of group (main effect time, p = 0.001), with no statistical difference between groups (main effect group, p = 0.272). Three-way ANOVA showed that, CMJ height after stretching was not affected by either stretching protocol at any time point (p = 0.503 to 0.996). Both stretching protocols equally increased ROM on weeks 6 (10.9 ± 13.4%, p < 0.001, d = 0.42), and 9 (21.5 ± 13.4%, p < 0.001, d = 0.78), and this increase was maintained during detraining (17.0 ± 15.0%, p < 0.001, d = 0.68). No increase in ROM was observed in the CG (p > 0.874). Static stretching of long duration applied either as single or multiple bouts of equal duration, results in similar acute and long-term improvements in ROM. Furthermore, both stretching protocols do not acutely affect subsequent CMJ performance, and this effect is not influenced by the large increase in ROM and CMJ overtime.  相似文献   

13.
This study examined in pubescent swimmers the effects on front crawl performances of a 6-week plyometric training (PT) in addition to the habitual swimming program. Swimmers were assigned to a control group (n = 11, age: 14.1 ± 0.2 years; G(CONT)) and a combined swimming and plyometric group (n = 12, age: 14.3 ± 0.2 years; GSP), both groups swimming 5.5 h · wk(-1) during a 6-week preseason training block. In the GSP, PT consisted of long, lateral high and depth jumps before swimming training 2 times per week. Pre and posttests were performed by jump tests (squat jump [SJ], countermovement jump [CMJ]) and swim tests: a gliding task, 400- and 50-m front crawl with a diving start (V400 and V50, m · s(-1)), and 2 tests with a water start without push-off on the wall (25 m in front crawl and 25 m only with kicks). Results showed improvement only for GSP for jump tests (Δ = 4.67 ± 3.49 cm; Δ = 3.24 ± 3.17 cm; for CMJ and SJ, respectively; p < 0.05) and front crawl tests (Δ = 0.04 ± 0.04 m · s(-1); Δ = 0.04 ± 0.05 m · s(-1); for V50 and V400, respectively; p < 0.05). Significant correlations were found for GSP between improvements in SJ and V50 (R = 0.73, p < 0.05). Results suggested a positive effect of PT on specific swimming tasks such as dive or turn but not in kicking propulsion. Because of the practical setup of the PT and the relevancy of successful starts and turns in swimming performances, it is strongly suggested to incorporate PT in pubescent swimmers' training and control it by jump performances.  相似文献   

14.
This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.  相似文献   

15.
The effects of 52 weeks of soccer or resistance training were investigated in untrained elderly men. The subjects aged 68.1±2.1 yrs were randomised into a soccer (SG; n = 9), a resistance (RG; n = 9) and a control group (CG; n = 8). The subjects in SG and RG, respectively, trained 1.7±0.3 and 1.8±0.3 times weekly on average during the intervention period. Muscle function and body composition were determined before and after 16 and 52 weeks of the intervention period. In SG, BMI was reduced by 1.5% and 3.0% (p<0.05) after 16 and 52 weeks, respectively, unchanged in RG and 2% higher (p<0.05) in CG after 52 weeks of the intervention period. In SG, the response to a glucose tolerance test was 16% lower (p<0.05) after 16 wks, but not after 52 wks, compared to before the intervention period, and unchanged in RG and CG. In SG, superoxide dismutase-2 expression was 59% higher (p<0.05) after 52 wks compared to before the intervention period, and unchanged in RG and CG. In RG, upper body lean mass was 3 and 2% higher (p<0.05) after 16 and 52 wks, respectively, compared to before the intervention period, and unchanged in SG and CG. In RG, Akt-2 expression increased by 28% (p<0.01) and follistatin expression decreased by 38% (p<0.05) during the 52-wk intervention period, and was unchanged in SG and CG. Thus, long-term soccer training reduces BMI and improves anti-oxidative capacity, while long-term resistance training impacts muscle protein enzyme expression and increases lean body mass in elderly men.

Trial Registration

ClinicalTrials.gov: NCT01530035  相似文献   

16.
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance.  相似文献   

17.
We examined the effects of 2 plyometric training programs, equalized for training volume, followed by a 4-week recovery period of no plyometric training on anaerobic power and vertical jump performance. Physically active, college-aged men were randomly assigned to either a 4-week (n = 19, weight = 73.4 +/- 7.5 kg) or a 7-week (n = 19, weight = 80.1 +/- 12.5 kg) program. Vertical jump height, vertical jump power, and anaerobic power via the Margaria staircase test were measured pretraining (PRE), immediately posttraining (POST), and 4 weeks posttraining (POST-4). Vertical jump height decreased in the 4-week group PRE (67.8 +/- 7.9 cm) to POST (65.4 +/- 7.8 cm). Vertical jump height increased from PRE to POST-4 in 4-week (67.8 +/- 7.9 to 69.7 +/- 7.6 cm) and 7-week (64.6 +/- 6.2 to 67.2 +/- 7.6 cm) training programs. Vertical jump power decreased in the 4-week group from PRE (8,660.0 +/- 546.5 W) to POST (8,541.6 +/- 557.4 W) with no change in the 7-week group. Vertical jump power increased PRE to POST-4 in 4-week (8,660.0 +/- 546.5 W to 8,793.6 +/- 541.4 W) and 7-week (8,702.8 +/- 527.4 W to 8,931.5 +/- 537.6 W) training programs. Anaerobic power improved in the 7-week group from PRE (1,121.9 +/- 174.7 W) to POST (1,192.2 +/- 189.1 W) but not the 4-week group. Anaerobic power significantly improved PRE to POST-4 in both groups. There were no significant differences between the 2 training groups. Four-week and 7-week plyometric programs are equally effective for improving vertical jump height, vertical jump power, and anaerobic power when followed by a 4-week recovery period. However, a 4-week program may not be as effective as a 7-week program if the recovery period is not employed.  相似文献   

18.
The purpose of this study was to examine the effect of 3 different plyometric training frequencies (e.g., 1 day per week, 2 days per week, 4 days per week) associated with 3 different plyometric training volumes on maximal strength, vertical jump performance, and sprinting ability. Forty-two students were randomly assigned to 1 of 4 groups: control (n = 10, 7 sessions of drop jump (DJ) training, 1 day per week, 420 DJs), 14 sessions of DJ training (n = 12, 2 days per week, 840 DJs), and 28 sessions of DJ training (n = 9, 4 days per week, 1680 DJs). The training protocols included DJ from 3 different heights 20, 40, and 60 cm. Maximal strength (1 repetition maximum [1RM] and maximal isometric strength), vertical height in countermovement jumps and DJs, and 20-m sprint time tests were carried out before and after 7 weeks of plyometric training. No significant differences were observed among the groups in pre-training in any of the variables tested. No significant changes were observed in the control group in any of the variables tested at any point. Short-term plyometric training using moderate training frequency and volume of jumps (2 days per week, 840 jumps) produces similar enhancements in jumping performance, but greater training efficiency (approximately 12% and 0.014% per jump) compared with high jumping (4 days per week, 1680 jumps) training frequency (approximately 18% and 0.011% per jump). In addition, similar enhancements in 20-m-sprint time, jumping contact times and maximal strength were observed in both a moderate and low number of training sessions per week compared with high training frequencies, despite the fact that the average number of jumps accomplished in 7S (420 jumps) and 14S (840 jumps) was 25 and 50% of that performed in 28S (1680 jumps). These observations may have considerable practical relevance for the optimal design of plyometric training programs for athletes, given that a moderate volume is more efficient than a higher plyometric training volume.  相似文献   

19.

Aim

Our study aimed to investigate changes of different markers for routine assessment of fatigue and recovery in response to high-intensity interval training (HIIT).

Methods

22 well-trained male and female team sport athletes (age, 23.0 ± 2.7 years; V̇O2max, 57.6 ± 8.6 mL·min·kg−1) participated in a six-day running-based HIIT-microcycle with a total of eleven HIIT sessions. Repeated sprint ability (RSA; criterion measure of fatigue and recovery), countermovement jump (CMJ) height, jump efficiency in a multiple rebound jump test (MRJ), 20-m sprint performance, muscle contractile properties, serum concentrations of creatinkinase (CK), c-reactive protein (CRP) and urea as well as perceived muscle soreness (DOMS) were measured pre and post the training program as well as after 72 h of recovery.

Results

Following the microcycle significant changes (p < 0.05) in RSA as well as in CMJ and MRJ performance could be observed, showing a decline (%Δ ± 90% confidence limits, ES = effect size; RSA: -3.8 ± 1.0, ES = -1.51; CMJ: 8.4 ± 2.9, ES = -1.35; MRJ: 17.4 ± 4.5, ES = -1.60) and a return to baseline level (RSA: 2.8 ± 2.6, ES = 0.53; CMJ: 4.1 ± 2.9, ES = 0.68; MRJ: 6.5 ± 4.5, ES = 0.63) after 72 h of recovery. Athletes also demonstrated significant changes (p < 0.05) in muscle contractile properties, CK, and DOMS following the training program and after the recovery period. In contrast, CRP and urea remained unchanged throughout the study. Further analysis revealed that the accuracy of markers for assessment of fatigue and recovery in comparison to RSA derived from a contingency table was insufficient. Multiple regression analysis also showed no correlations between changes in RSA and any of the markers.

Conclusions

Mean changes in measures of neuromuscular function, CK and DOMS are related to HIIT induced fatigue and subsequent recovery. However, low accuracy of a single or combined use of these markers requires the verification of their applicability on an individual basis.  相似文献   

20.
The aims of the present study were to compare the effects of 1) training at 90 and 100% sprint velocity and 2) supervised versus unsupervised sprint training on soccer-specific physical performance in junior soccer players. Young, male soccer players (17 ±1 yr, 71 ±10 kg, 180 ±6 cm) were randomly assigned to four different treatment conditions over a 7-week intervention period. A control group (CON, n=9) completed regular soccer training according to their teams’ original training plans. Three training groups performed a weekly repeated-sprint training session in addition to their regular soccer training sessions performed at A) 100% intensity without supervision (100UNSUP, n=13), B) 90% of maximal sprint velocity with supervision (90SUP, n=10) or C) 90% of maximal sprint velocity without supervision (90UNSUP, n=13). Repetitions x distance for the sprint-training sessions were 15x20 m for 100UNSUP and 30x20 m for 90SUP and 90UNSUP. Single-sprint performance (best time from 15x20 m sprints), repeated-sprint performance (mean time over 15x20 m sprints), countermovement jump and Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) were assessed during pre-training and post-training tests. No significant differences in performance outcomes were observed across groups. 90SUP improved Yo-Yo IR1 by a moderate margin compared to controls, while all other effect magnitudes were trivial or small. In conclusion, neither weekly sprint training at 90 or 100% velocity, nor supervised sprint training enhanced soccer-specific physical performance in junior soccer players.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号