首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalconaringenin, naringenin, naringenin-7-glucoside, and m- and p-coumaric acids have been identified in the fruit cuticles of three tomato cultivars. The phenolic content of the cuticles increased substantially during fruit development, those from immature green and mature ripe fruits of cv Ailsa Craig yielding respectively 2.8 and 61 μg/cm2 (representing 1.4 and 6% of the total membrane wt). Coumaric acids, present only in the ‘cutin-bound’ phenolics, increased from 2 to 24 μg/cm2 during fruit development. Flavonoids, synthesized mainly during the climacteric, occurred free in the epicuticular (0.3–7.2 μg/cm2) and cuticular (0.7–5.7 μg/cm2) phenolics but the major part of this class of constituents in ripe fruit cuticles was also ‘bound’ to the cutin matrix (30–43 μg/cm2). The composition of the flavonoid fraction was controlled by the spectral quality of incident radiation, red light favouring the formation of chalconaringenin.  相似文献   

2.
Radiolabelling of epicuticular waxes and cutin of isolated tomato fruit cuticles were determined after fruit surface application of 3 H-phenylalanine precursor. During fruit ripening, the precursor is incorporated in different phenolic components: the flavanone naringenin was found to be the major compound in the epicuticular waxes, while the amount of the labelled flavonoid in the cutin matrix was progressively increased throughout fruit ripening. Confocal microscopy, together with experimental estimation of the mobility (diffusion coefficient, D ) and affinity (partition coefficient, K ) of the flavonoids naringenin and chalconaringenin for the different cuticular components, indicate that these compounds are extruded to the outer surface of tomato fruits, forming molecular clusters.  相似文献   

3.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

4.
Phenolic and other compounds were extracted from micropropagated axillary shoots (microshoots) of the walnut (Juglans regia L.) cultivars ‘Chandler’, ‘Howard’, ‘Kerman’, ‘Sunland’, and ‘Z63’. Among cultivars, microshoots showed differences in phenolic compounds, phenolic acids, flavonoids, and proanthocyanidins. All cultivars contained the phenolics acids chlorogenic acid, gallic acid, p-coumaric acid; the naphthoquinone juglone; and the flavonoid quercetin. The phenolic acids syringic acid and vanillin were present only in microshoots of ‘Howard’. Microshoot extracts had different antioxidant activity with ‘Kerman’ the highest and ‘Chandler’ the lowest in each of three antioxidant assays: the phosphomolybdenum assay (PPM), reducing power assay, and 2,2-diphenyl-1-picrylhydrazyl-scavenging effect. There was a strong linear relationship between total phenolic compound content of microshoots and increasing antioxidant activity.  相似文献   

5.
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.  相似文献   

6.
Ferulic, p-coumaric, and caffeic acids are phenolic acids present in soil, food, and gut, which have antimicrobial effects. Some Gram (+) bacteria metabolize these phenolic acids into vinyl derivatives due to phenolic acid decarboxylase activity (PAD) involved in the phenolic acid stress response (PASR). In this study, the antimicrobial activity of phenolic acids and their vinyl derivatives was tested on a panel of desirable and undesirable food-borne bacteria, especially Gram (?) species of Salmonella, Enterobacter, Klebsiella, and Pseudomonas, most of them without PAD activity. Native and engineered Escherichia coli strains either expressing or not PAD activity were included. Gram (?) bacteria of the panel were not significantly inhibited by phenolic acids at 3 mM, but were dramatically inhibited by the corresponding vinyl derivatives. On the contrary, Gram (+) bacteria displaying the PASR face the toxicity of phenolic acids by PAD activity and are not inhibited by vinyl phenols. In E. coli, the genes aaeB and marA, encoding efflux pumps for antimicrobial compounds, are upregulated by the addition of p-coumaric acid, but not by its derivative 4-vinyl phenol (p-hydroxystyrene). These results suggest that phenolic acids and their vinyl phenol derivatives produced by PAD (+) species could have a significant impact on undesirable or pathogenic food-borne Gram (?) bacteria in complex microbial ecosystems.  相似文献   

7.
When grown on glucose as principal carbon source the culture medium of Polyporus hispidus was found to contain phenolic acids, including p-coumaric and caffeic acids. 14C-Studies indicated that phenylalanine is converted to cinnamic acid as well as to phenylpyruvic acid and tyrosine in cultures. Cell-free preparations of mycelium contained phenylalanine and tyrosine ammonia-lyse activities and were capable of effecting the hydroxylation of cinnamic, p-coumaric and benzoic acids.  相似文献   

8.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

9.
Phenolic acids are active antimicrobial compounds and root signaling molecules that play important roles in plant defense responses. They are generally present in plants as glycosides or esters. A range of soluble and bound phenolic acids were detected in roots and root nodules of Arachis hypogaea L., among which five were identified by high performance liquid chromatography (HPLC) coupled with UV–Vis diode array detector (DAD), viz., p-coumaric acid (p-com), p-hydroxybenzaldehyde (HBAld), p-hydroxybenzoic acid (HBA), caffeic acid (CA) and protocatechuic acid (PA). Para-coumaric acid was constitutively present in all fractions whereas HBA was present in the soluble form only in young nodules. CA and PA were mostly present in the wall bound fraction. The root nodules contain higher concentration of phenolic acids than non-nodulated roots and presence of peroxidase and polyphenol oxidase indicate the metabolism of phenolic acids in roots and root nodules. These results indicate that phenolic acids (p-com and CA) in bound-glycosidic or ester forms were major components in cell wall fortification which provide protection to the root nodule from pathogen attack.  相似文献   

10.
Grass lignocelluloses, such as those in corn and switchgrass, are a major resource in the emerging cellulose-to-ethanol strategy for biofuels. The potential bioconversion of carbohydrates in this potential resource, however, is limited by the associated aromatic constituents within the grass fiber. These aromatics include both lignins, which are phenylpropanoid units of various types, and low-molecular weight phenolic acids. Structural and chemical studies over the years have identified the location and limitation to fiber degradation imposed by a variety of these aromatic barriers. For example, coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues. On the other hand, cell walls with syringyl lignin, e.g., leaf sclerenchyma, are often less recalcitrant. Ferulic and p-coumaric acids that are esterified to hemicellulosic sugars constitute a major limitation to biodegradation in non-lignified cell walls in grass fibers, especially warm season species. Non-chemical methods to improve bioconversion of the lignocelluloses through modification of aromatics include: (1) use of lignin-degrading white rot fungi, (2) pretreatment with phenolic acid esterases, and (3) plant breeding to modify cell wall aromatics. In addition to increased availability of carbohydrates for fermentation, separation and collection of aromatics could provide value-added co-products to improve the economics of bioconversion. JIMB-2008: BioEnergy—Special issue.  相似文献   

11.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

12.
No interactions between water stress and three phenolic acids(p-coumaric, caffeic and ferulic acids) on lettuce (Lactucasativa L. var. Grand Rapids) seed germination were found. Probitanalysis indicated that mechanisms of action of water stressand the phenolic inhibitors were similar. The relative effectivenessof the compounds was p-coumaric > ferulic > caffeic. Nointeraction was found between p-coumaric and ferulic acid, whereasantagonism was found between caffeic acid and each of the othertwo phenolic acids. Lactuca sativa L., lettuce, germination, phenolic compounds, moisture stress, allelopathy, seed  相似文献   

13.
《Phytochemistry》1987,26(7):1915-1916
Considerable amounts of esterified E-5-hydroxyferulic acid and very small amounts of esterified E-sinapic acid were detected and identified in cell walls of young Zea mays and Hordeum vulgare, in addition to known E-p-coumaric and ferulic acids. Their relative amounts were determined by peak areas using GC. The ratios of E-p-coumaric-5-hydroxyferulic-sinapic-ferulic acid were 440:46:2:100 in corn, and 37:26:3:100 in barley, respectively.  相似文献   

14.
The major phenolic acid found in gherkin tissues is p-coumaric acid, although cinnamic and caffeic acids are also present; these occur both free an  相似文献   

15.
Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical‐compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14‐fold range for total wax amounts and a more than 16‐fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n‐alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper.  相似文献   

16.
Isolated rumen bacteria were examined for growth and, where appropriate, for their ability to degrade cellulose in the presence of the hydroxycinnamic acids trans-p-coumaric acid and trans-ferulic acid and the hydroxybenzoic acids vanillic acid and 4-hydroxybenzoic acid. Ferulic and p-coumaric acids proved to be the most toxic of the acids examined and suppressed the growth of the cellulolytic strains Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes when included in a simple sugars medium at concentrations of >5 mM. The extent of cellulose digestion by R. flavefaciens and B. succinogenes but not R. albus was also substantially reduced. Examination of rumen fluid from sheep maintained on dried grass containing 0.51% phenolic acids showed the presence of phloretic acid (0.1 mM) and 3-methoxyphloretic acid (trace) produced by hydrogenation of the 2-propenoic side chain of p-coumaric and ferulic acids, respectively. The parent acids were found in trace amounts only, although they represented the major phenolic acids ingested. Phloretic and 3-methoxyphloretic acids proved to be considerably less toxic than their parent acids. All of the cellulolytic strains (and Streptococcus bovis) showed at least a limited ability to hydrogenate hydroxycinnamic acids, with Ruminococcus spp. proving the most effective. No further modification of hydroxycinnamic acids was produced by the single strains of bacteria examined. However, a considerable shortfall in the recovery of added phenolic acids was noted in media inoculated with rumen fluid. It is suggested that hydrogenation may serve to protect cellulolytic strains from hydroxycinnamic acids.  相似文献   

17.
18.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

19.
Phenolic acids are plant metabolites important in phytotherapy and also in cosmetology. In this study, proliferating shoot and callus cultures of Aronia melanocarpa were established and maintained on Linsmaier and Skoog (L-S) medium containing different levels of α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA), ranging from 0.1 to 3.0 mg l?1. Methanolic extracts from the biomass of these cultures and from the fruits of soil-grown plants were used to determine the amounts of free phenolic acids and cinnamic acid using the high-performance liquid chromatography (HPLC) method. Out of a total of twelve analyzed compounds, all of the extracts contained four of them: caffeic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid. Moreover, shoot extracts also contained salicylic acid (o-hydroxybenzoic acid), while callus extracts contained p-coumaric acid. On the other hand, fruit extracts also contained both salicylic acid and p-coumaric acid. The total amount of the analyzed compounds in extracts from both shoot and callus cultures depended on the L-S medium used, and varied between 103.05 and 150.95 mg 100 g?1 dry weight (DW), and between 50.23 and 81.56 mg 100 g?1 DW, respectively. Both types of culture contained higher levels of phenolic acids than the fruit extracts (32.43 mg 100 g?1 DW). In shoot cultures, p-hydroxybenzoic acid and salicylic acid were the predominant metabolites (reaching 55.14 and 78.25 mg 100 g?1 DW, respectively), while in callus cultures, p-hydroxybenzoic acid (25.60 mg 100 g?1 DW) and syringic acid (41.20 mg 100 g?1 DW) were the main compounds. In fruit extracts, salicylic acid (15.60 mg 100 g?1 DW) and p-hydroxybenzoic acid (5.29 mg 100 g?1 DW) were predominant.  相似文献   

20.
Previous kinetic, isotopic studies have suggested that ‘insoluble’ phenolic esters may be precursors of lignin. Heretofore, the ‘insoluble’ esters have been detected by the chromatographic examinations of gross hydrolysis products of ethanol-insoluble resides and/or acetone powders. We have developed new methods for the isolation and purification of certain of the ethanol-insoluble, phenolic esters of Mentha arvensis. ‘Insoluble’ conjugates of caffeic, ferulic and p-coumaric acids were purified and were shown to be electro-phoretically and chromatographically homogeneous. These compounds were distinguished on the basis of their anionic mobility at pH 1·9. A second pool of caffeic acid was associated with a high MW fraction. Two acylated anthocyanins containing p-coumaric acid and caffeic acid were also obtained from acetone powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号