首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel, modified thymidine nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), trigger reactive oxygen species (ROS) generation and DNA damage and thereby induce caspase-mediated apoptosis in human HL-60 cells; however, the mechanism leading to caspase activation and apoptotic cell death remains unclear. Therefore, we investigated the signaling molecules involved in nucleoside derivative-induced caspase activation and apoptosis in HL-60 cells. PhSe-T/MeSe-T treatment activated two mitogen-activated protein kinases (MAPKs), extracellular-receptor kinase (ERK) and p38, and induced the phosphorylation of two downstream targets of p38, ATF-2 and MAPKAPK2. In addition, the selective p38 inhibitor SB203580 suppressed PhSe-T/MeSe-T-induced apoptosis and activation of caspase-3, -9, -8, and -2, whereas the jun amino-terminal kinase (JNK) inhibitor SP600125 and the ERK inhibitor PD98059 had no effect. SB203580 and an ROS scavenger, tiron, inhibited PhSe-T/MeSe-T-induced histone H2AX phosphorylation, which is a DNA damage marker. Moreover, tiron inhibited PhSe-T/MeSe-T-induced phosphorylation of p38 and enhanced p38 MAP kinase activity, indicating a role for ROS in PhSe-T/MeSe-T-induced p38 activation. Taken together, our results suggest that PhSe-T/MeSe-T-induced apoptosis is mediated by the p38 pathway and that p38 serves as a link between ROS generation and DNA damage/caspase activation in HL-60 cells.  相似文献   

2.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

3.
Pulse treatment of U-937 promonocytic cells with cadmium chloride (2 h at 200 microM) provoked apoptosis and induced a rapid phosphorylation of p38 mitogen-activated protein kinase (p38(MAPK)) as well as a late phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). However, although the p38(MAPK)-specific inhibitor SB203580 attenuated apoptosis, the process was not affected by the ERK-specific inhibitor PD98059. The attenuation of the cadmium-provoked apoptosis by SB203580 was a highly specific effect. In fact, the kinase inhibitor did not prevent the generation of apoptosis by heat shock and camptothecin, nor the generation of necrosis by cadmium treatment of glutathione-depleted cells, nor the cadmium-provoked activation of the stress response. The generation of apoptosis was preceded by intracellular H(2)O(2) accumulation and was accompanied by the disruption of mitochondrial transmembrane potential, both of which were inhibited by SB203580. On the other hand, the antioxidant agent butylated hydroxyanisole-inhibited apoptosis but did not prevent p38(MAPK) phosphorylation. In a similar manner, p38(MAPK) phosphorylation was not affected by the caspase inhibitors Z-VAD and DEVD-CHO, which nevertheless prevented apoptosis. These results indicate that p38(MAPK) activation is an early and specific regulatory event for the cadmium-provoked apoptosis in promonocytic cells.  相似文献   

4.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.  相似文献   

6.
Whereas the p38 MAP kinase has largely been associated with anti-proliferative functions, several observations have indicated that it may also have positive effects on proliferation. In hepatocytes, we have found that p38 has opposing effects on DNA synthesis when activated by EGF and HGF. Here we have studied the function of p38 in EGF- and HGF-induced DNA synthesis in the two pancreatic carcinoma cell lines AsPC-1 and Panc-1. In Panc-1 cells, the MEK inhibitor PD98059 reduced EGF- and HGF-induced DNA synthesis, while the p38 inhibitor SB203580 strongly increased the basal DNA synthesis and reduced expression of the cyclin-dependent kinase inhibitor (CDKI) p21. In contrast, in AsPC-1 cells, EGF- and HGF-induced DNA synthesis was not significantly reduced by PD98059 but was inhibited by SB203580. Treatment with SB203580 amplified the sustained ERK phosphorylation induced by these growth factors and caused a marked upregulation of the expression of p21, which could be blocked by PD98059. These results suggest that while DNA synthesis in Panc-1 cells is enhanced by ERK and strongly suppressed by p38, in AsPC-1 cells, p38 exerts a pro-mitogenic effect through MEK/ERK-dependent downregulation of p21. Thus, p38 may have suppressive or stimulatory effects on proliferation depending on the cell type, due to differential cross-talk between the p38 and MEK/ERK pathways.  相似文献   

7.
8.
Sphingosine-1-phosphate (S-1-P) has been identified as an extracellular mediator and an intracellular second messenger that may modulate cell motility, adhesion, proliferation, and differentiation and cancer cell invasion. Widely distributed, S-1-P is most abundant in the intestine. Although S-1-P is likely to modulate various intracellular pathways, activation of the mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase 1 (ERK1), ERK2, and p38 is among the best-characterized S-1-P effects. Because the MAPKs regulate proliferation, we hypothesized that S-1-P might stimulate intestinal epithelial cell proliferation by MAPK activation. Human Caco-2 intestinal epithelial cells were cultured on a fibronectin matrix because fibronectin is an important constituent of the gut mucosal basement membrane. We assessed ERK1, ERK2, and p38 activation by Western blotting with antibodies specific for their active forms and proliferation by Coulter counting at 24 h. Specific MAP kinase kinase (MEK) and p38 inhibitors PD98059 (20 microM) and SB202190 and SB203580 (10 and 20 microM) were used to probe the role of ERK and p38 in S-1-P-mediated proliferation. Three or more similar studies were pooled for the analysis. S-1-P stimulated Caco-2 proliferation and dose-responsively activated ERK1, ERK2, and p38. Proliferation peaked at 5 microM, yielding a cell number 166.3 +/- 2.7% of the vehicle control (n = 6, P < 0.05). S-1-P also maximally stimulated ERK1, ERK2, and p38 at 5 microM, to 164.4 +/- 19.9%, 232.2 +/- 38.5%, and 169.2 +/- 20.5% of the control, respectively. Although MEK inhibition prevented S-1-P activation of ERK1 and ERK2 and slightly but significantly inhibited basal Caco-2 proliferation, MEK inhibition did not block the S-1-P mitogenic effect. However, pretreatment with 10 microM SB202190 or SB203580 (putative p38 inhibitors) attenuated the stimulation of proliferation by S-1-P. Twenty micromolars of SB202190 or SB203580 completely blocked the mitogenic effect of S-1-P. Ten to twenty micromolars of SB202190 and SB203580 also dose-dependently ablated the effects of 5 microM S-1-P on heat shock protein 27 accumulation, a downstream consequence of p38 MAPK activation. Consistent with the reports in some other cell types, S-1-P appears to activate ERK1, ERK2, and p38 and to stimulate proliferation. However, in contrast to the mediation of the S-1-P effects in some other cell types, S-1-P appears to stimulate human intestinal epithelial proliferation by activating p38. ERK activation by S-1-P is not required for its mitogenic effect.  相似文献   

9.
Stimulation of rat peritoneal neutrophils with staurosporine (64 nM) induced production of macrophage inflammatory protein-2 (MIP-2) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase/MAP kinase (ERK/MAPK). The staurosporine-induced MIP-2 production at 4 h was inhibited by the highly specific p38 MAPK inhibitor SB 203580 and the MAPK/ERK kinase (MEK-1) inhibitor PD 98059 in a concentration-dependent manner. By treatment with SB 203580 (1 microM) or PD 98059 (50 microM), the staurosporine-induced increase in the levels of mRNA for MIP-2 was only partially lowered, although the staurosporine-induced MIP-2 production was completely inhibited. Consistent with the inhibition by the protein synthesis inhibitor cycloheximide, SB 203580 and PD 98059 inhibited MIP-2 production at 4 h either when added simultaneously with staurosporine or 2 h after stimulation with staurosporine. In contrast, the DNA-dependent RNA polymerase inhibitor actinomycin D did not inhibit MIP-2 production at 4 h when it was added 2 h after staurosporine stimulation. Dot blot analysis demonstrated that treatment with SB 203580 or PD 98059 down-regulates the stability of MIP-2 mRNA. These results suggested that p38 MAPK and ERK/MAPK pathways are involved in translation of MIP-2 mRNA to protein and stabilization of MIP-2 mRNA.  相似文献   

10.
11.
Lee MW  Park SC  Yang YG  Yim SO  Chae HS  Bach JH  Lee HJ  Kim KY  Lee WB  Kim SS 《FEBS letters》2002,512(1-3):313-318
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells.  相似文献   

12.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

13.
14.
15.
Lee SK  Jang HJ  Lee HJ  Lee J  Jeon BH  Jun CD  Lee SK  Kim EC 《Life sciences》2006,79(15):1419-1427
Iron is essential for neoplastic cell growth, and iron chelators have been tested for potential anti-proliferative and anti-cancer effects, but the effects of iron chelators on oral cancer have not been clearly elucidated. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during iron chelator-induced apoptosis and differentiation of immortalized human oral keratinocytes (IHOK) and oral cancer cells (HN4). The iron chelator deferoxamine (DFO) exerted potent time- and dose-dependent inhibitory effects on the growth and apoptosis of IHOK and HN4 cells. DFO strongly activates p38 MAP kinase and extracellular signal-regulated kinase (ERK), but does not activate c-Jun N-terminal kinase/stress-activated protein kinase. Of the three MAP kinase blockers used, the selective p38 MAP kinase inhibitor SB203580 and ERK inhibitor PD98059 protected IHOK and HN4 cells against iron chelator-induced cell death, which indicates that the p38 and ERK MAP kinase is a major mediator of apoptosis induced by this iron chelator. Interestingly, treatment of IHOK and HN4 cells with SB203580 and PD98059 abolished cytochrome c release, as well as the activation of caspase-3 and caspase-8. DFO suppressed the expression of epithelial differentiation markers such as involucrin, CK6, and CK19, and this suppression was blocked by p38 and ERK MAP kinase inhibitors. Collectively, these data suggested that p38 and ERK MAP kinase plays an important role in iron chelator-mediated cell death and in the suppression of differentiation of oral immortalized and malignant keratinocytes, by activating a downstream apoptotic cascade that executes the cell death pathway.  相似文献   

16.
17.
18.
We have previously demonstrated that the thromboxane-mimetic U46619 enhances α(2)-adrenoceptor-mediated contractions through increased activation of extracellular signal-regulated kinase (ERK). In this study, we determined whether U46619 also enhances P2X-mediated contractions through the same pathway. Segments of porcine splenic artery were mounted in isolated tissue baths. Tissues were pre-contracted with U46619 to 10-20% of the response to 60 mM KCl prior to addition of α,β-methylene ATP (P2X receptor agonist). The effect of inhibition of ERK activation with the mitogen-activated protein (MAP)/ERK kinase inhibitor PD98059 (50 μM), Rho kinase inhibition with Y27632 (10 μM), p38 MAP kinase with SB203580 (10 μM) or L-type calcium channels with nifedipine (1 μM) on both the direct and enhanced contractions was then determined. U46619 enhanced the contractions to α,β-methylene ATP. Although PD98059 inhibited the direct contractions to α,β-methylene ATP, it had no effect on the U46619-enhanced contractions. Similarly, Y27632 and SB203580 inhibited the direct contractions to α,β-methylene ATP, but had no effect on the enhanced contractions. Nifedipine inhibited the responses to α,β-methylene ATP in the absence and presence of U46619. This study demonstrates that pre-contraction with U46619 enhances P2X-mediated contractions in the porcine splenic artery through a mechanism independent of ERK, Rho kinase and p38 MAP kinase. Further studies are required to determine the exact mechanism involved.  相似文献   

19.
One important action of growth factors is their participation in tissue repair; however, the signaling pathways involved are poorly understood. In a model of corneal wound healing, we found that two paracrine growth factors, hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF), induced rapid and marked activation and prompt nuclear accumulation of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2), but not of JNK (p-JNK1/2), in corneal epithelial cells. Interruption of p38 and ERK1/2 signaling pathways by pretreatment with inhibitors SB203580 and PD98059 and subsequent stimulation with HGF or KGF abolished the activation and nuclear localization. Inhibition of either one of these mitogen-activated protein kinases, p38 or ERK1/2, induced a robust cross-activation of the other. In immunofluorescence studies of wounded cornea, p-p38, unlike p-ERK1/2, was immediately detectable in epithelium after injury. Inhibition of p38 by SB203580 blocked migration of epithelial cells almost completely. In contrast, PD98059 seemed to slightly increase the migration, through concomitant activation of p38. Unlike ERK1/2, p38 did not significantly contribute to proliferation of epithelial cells. Inhibition of either the ERK1/2 or p38 pathway resulted in delayed corneal epithelial wound healing. Interruption of both signaling cascades additively inhibited the wound-healing process. These findings demonstrate that both p38 and ERK1/2 coordinate the dynamics of wound healing: while growth factor-stimulated p38 induces epithelial migration, ERK1/2 activation induces proliferation. The cross-talk between these two signal cascades and the selective action of p38 in migration appear to be important to corneal wound healing, and possibly wound healing in general, and may offer novel drug targets for tissue repair.  相似文献   

20.
In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal α-actin mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号