首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein gp85, the product of the BXLF2 open reading frame (ORF), is the gH homolog of Epstein-Barr virus (EBV) and has been implicated in penetration of virus into B cells. Like its counterparts in other herpesviruses, it associates with a gL homolog, gp25, which is the product of the BKRF2 ORF. Unlike the gH homologs of other herpesviruses, however, gp85 also complexes with two additional glycoproteins of 42 and 38 kDa. Glycoproteins gp42 and gp38 were determined to be alternatively processed forms of the BZLF2 gene product. Coexpression of EBV gH and gL facilitated transport of gH to the cell surface and resulted in formation of a stable complex of gH and gL. It also restored expression of an epitope recognized by monoclonal antibody E1D1, which immunoprecipitates the native gH complex but not recombinant gH expressed in isolation. Coexpression of gH, gL, and the BZLF2 ORF restored expression of an epitope recognized by a second monoclonal antibody, F-2-1, which immunoprecipitates the native gH-gL-gp42/38 complex but not the complex of recombinant gH and gL alone. The epitope recognized by antibody F-2-1 was mapped to the BZLF2 gene product itself. Antibody F-2-1 inhibited the ability of EBV to infect B lymphocytes but had no effect on the ability of the virus to infect the epithelial cell line SVK-CR2. In contrast, antibody E1D1 had no effect on infection of the B-cell line but inhibited infection of the epithelial cell line. These results indicate that penetration of the two cell types by EBV involves differential use of the gH-gL-gp42/38 complex and suggest the hypothesis that the BZLF2 gene product has evolved as a unique adaptation to infection of B lymphocytes by EBV.  相似文献   

2.
3.
4.
5.
6.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

7.
8.
Lytic Epstein-Barr virus (EBV) replication occurs in differentiated, but not undifferentiated, epithelial cells. Retinoic acid (RA) induces epithelial cell differentiation. The conversion of retinol into its active form, retinoic acid, requires retinol dehydrogenase enzymes. Here we show that AGS gastric carcinoma cells containing the lytic form of EBV infection have enhanced expression of a gene (DHRS9) encoding an enzyme that mediates conversion of retinol into RA. DHRS9 expression is also increased following induction of lytic viral infection in EBV-positive Burkitt lymphoma cells. We demonstrate that the EBV immediate-early protein, BZLF1, activates the DHRS9 promoter through a direct DNA binding mechanism. Furthermore, BZLF1 expression in AGS cells is sufficient to activate DHRS9 gene expression and increases the ability of retinol to induce the RA-responsive gene, CYP26A1. Production of RA during the lytic form of EBV infection may enhance viral replication by promoting keratinocyte differentiation.  相似文献   

9.
10.
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G(1)/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G(1)/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.  相似文献   

11.
12.
Epstein-Barr virus (EBV) nonproducer Raji cells stably maintain approximately 45 copies of the EBV genome per cell, depending on the presence of the EBV-determined nuclear antigen 1 (EBNA-1) protein. We found that transfection of the EBV BZLF1 gene causes the disappearance of EBNA proteins on Western blots (immunoblots). On the basis of these results, we attempted to eliminate EBV plasmids in Raji cells by transfecting a BZLF1 plasmid. Among 33 clones that were cotransfected with a BZLF1 plasmid and a hygromycin B resistance plasmid and selected resistant for hygromycin B, 24 clones had decreased numbers of EBV plasmids, as revealed by the decrease in the intensity of the EBV band on Southern blots compared with that of nontransfected Raji cells.  相似文献   

13.
14.
The Epstein-Barr virus (EBV) BZLF1 gene product is thought to mediate the disruption of latent EBV infection. We have examined the regulatory effects of BZLF1 by studying its transactivating effects on seven different EBV promoters. We find that whereas the BZLF1 gene product increases the activity of the two early promoters, BMLF1 and BMRF1, it decreases the activity of three latent promoters (the BamHI-C and BamHI-W Epstein-Barr nuclear antigen promoters and the latent membrane protein promoter). The BZLF1-induced changes in promoter-directed chloramphenicol acetyltransferase activity occur in EBV-negative as well as EBV-positive cell lines and are accompanied by a similar change in chloramphenicol acetyltransferase mRNA. Deletion analysis of the BamHI Z fragment indicates that in a portion of the amino-terminal half of the BZLF1 gene product (amino acids 24 to 86) is not essential for positive transactivating effects but is required for down-regulating effects. Thus, different domains of the same EBV immediate-early gene product can either increase the function of EBV promoters active in productive infection or decrease the function of key promoters active in latent infection.  相似文献   

15.
16.
17.
18.
A Marchini  J I Cohen  F Wang    E Kieff 《Journal of virology》1992,66(5):3214-3219
The derivation of specifically mutated Epstein-Barr virus (EBV) recombinants is dependent on strategies to identify, enumerate, and clone infected B lymphocytes. In recent experiments, EBV recombinants containing a positive selection marker were identified and cloned in B-lymphoma (BL) cells infected and then plated under selective conditions (F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). We now use BL cells, for the first time, as hosts for assaying and cloning otherwise isogenic EBV recombinants carrying a hygromycin phosphotransferase (HYG) gene linked to either a nontransforming deletion mutant or a transforming wild-type EBV nuclear antigen 2 (EBNA-2) gene. Both types of recombinants converted BL cells to hygromycin resistance with similar efficiency, formed episomes, and usually expressed only EBNA-1. Only the wild-type EBNA-2 HYG gene EBV recombinant transformed primary B lymphocytes. This strategy of assaying virus on BL and primary B lymphocytes makes possible the direct assessment of the transforming efficiency of an EBV recombinant. The resultant infected BL cells are also useful for the characterization of the nontransforming recombinant EBV genomes. The HYG gene insertion in the BHLF1 open reading frame eliminated BHLF1 protein expression. The insertion and resulting BHLF1 mutation did not interfere with primary B-lymphocyte infection, growth transformation, induction of lytic infection, or virus production. Thus, these experiments also indicate that neither the BHLF1 open reading frame nor the HYG gene insertion critically affects B-lymphocyte infection in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号