首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kermode, A. R., Gifford, D. J. and Bewley, J. D. 1985. The roleof maturation drying in the transition from seed developmentto germination. III. Insoluble protein synthetic pattern changeswithin the endosperm of Ricinus communis L. seeds.—J.exp. Bot. 36: 1928–1936. Immature seeds of Ricinus communisL. cv. Hale (castor bean) removed from the capsule at 30 or40 days after pollination (DAP) can be induced to germinateby being subjected to drying. This desiccation–inducedswitch from development to germination is mirrored by a change,upon subsequent rehydration, in the pattern of insoluble proteinsynthesis within the endosperm storage tissue. During normaldevelopment from 25–40 DAP there is rapid synthesis ofthe insoluble (11S) crystalloid storage protein. At later stagesof development (45 and 50 DAP), crystalloid protein synthesisdeclines markedly and synthesis of new insoluble proteins commences.Following premature drying at 30 or 40 DAP, the pattern of insolubleprotein synthesis upon rehydration is virtually identical tothat following imbibition of the mature seed. Proteins synthesizedduring normal late development (at 45 and 50 DAP) are producedup to 48 h after imbibition; a subsequent change in the patternof insoluble protein synthesis occurs between 48 and 72 h. Thus,in contrast to the rapid switch in the pattern of soluble proteinsynthesis induced by drying, insoluble protein syntheses withinthe endosperm are redirected towards those uniquely associatedwith a germination/growth programme only after a considerabledelay following mature seed imbibition, or following rehydrationof the prematurely dried seed. Nevertheless, these results supportour contention that drying plays a role in the suppression ofthe developmental metabolic programme and in the permanent inductionof a germination/growth programme. Key words: Desiccation, crystalloid storage proteins, castor bean, seed development, seed germination  相似文献   

2.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.—J.exp. Bot. 39: 487–497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (50–60DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination  相似文献   

3.
During mid-development (25–40 d after pollination: DAP)of the castor bean seed the amount of abscisic acid (ABA) increasesin both the endosperm and the embryo, declining substantiallythereafter until there is little present in the mature dry (60DAP) seed. Premature desiccation of the seed at 35 DAP alsoleads to a major decline in ABA within the embryo and endosperm.Partial water loss from the seed at 35 DAP which, like naturaland premature desiccation, leads to subsequent germination uponreturn of the seed to full hydration, causes a much smallerdecline in ABA levels. In contrast, ABA declines substantiallyin the non-dried (hydrated) control at 35 DAP, but the seedsdo not germinate. Hence, a clear negative correlation betweenABA content and germinability is not observed. Both drying,whether natural or imposed prematurely, and partial drying decreasethe sensitivity of the isolated embryo to exogenous ABA by about10-fold. The protein synthetic response of the castor bean embryo exposedto 0.1 mol m–3 ABA following premature desiccation exhibitssome similarity to the response of the non-dried developingembryo—in both cases the synthesis of some developmentalproteins is enhanced by ABA, and germination is suppressed.Germination of mature seeds is also suppressed by 0.1 mol m–3ABA, but the same developmental proteins are not synthesized.In the cotyledons of prematurely-desiccated seed, some proteinsare hydrolysed upon imbibition in 0.1 mol m–3 ABA, a phenomenonthat occurs also in the cotyledons of similarly treated matureembryos, but not in developing non-dried embryos. Hence theembryo exhibits an ‘intermediate’ response uponrehydration in 0.1 mol m–3 ABA following premature desiccation;viz. some of the responses are developmental and some germinative.Following natural or imposed drying, the isolated embryo becomesrelatively insensitive to 0.01 mol m–3 ABA: germinationis elicited and post-germinative reserve breakdown occurs inthe radicle and cotyledons. The reduced sensitivity of the embryoto ABA as a consequence of desiccation may be an important factorin eliciting the switch to germination and growth within thewhole seed. Key words: Abscisic acid, desiccation, astor bean endosperm, seed development, germination, protein synthesis, isolated embryos, hormone sensitivity  相似文献   

4.
Kermode, A. R. and Bewley, J. D. 1985. The role of maturationdrying in the transition from seed development to germination.II. Post–germinative enzyme production and soluble proteinsynthetic pattern changes within the endosperm of Ricinus communisL. seeds.—J. exp. Bot. 36: 1916–1927. Immature seedsof Ricinus communis L. cv. Hale (castor bean) removed from thecapsule at 30 or 40 d after pollination (DAP) do not germinateunless first subjected to a desiccation treatment. This changefrom development to germination elicited by premature desiccationis also mirrored by a change, upon subsequent rehydration, inthe pattern of soluble protein synthesis within the endospermstorage tissue. Following rehydration of prematurely dried 30or 40 DAP seeds, soluble proteins characteristic of developmentcease to be synthesized after 5 h of imbibition, and those uniquelyassociated with germination and growth are then produced. Apattern of soluble storage protein breakdown comparable to thatfound in endosperms from mature seeds following imbibition isalso observed. In contrast, hydration of 40 DAP seeds immediatelyfollowing detachment from the mother plant results in a continuationof the developmental pattern of protein synthesis. Prematuredesiccation at 40 DAP elicits the production within the endospermof enzymes involved in protein reserve breakdown (leucyl ß–naphthylamidase;LeuNAase) and lipid utilization (isocitrate lyase; ICL) to levelscomparable to those observed in mature–hydrated endosperms.It is proposed that drying plays a role in redirecting metabolismfrom a developmental to a germinative mode; it also appearsto be a prerequisite for the induction of hydrolytic enzymesessential to the post–germinative (growth) phase of seedlingdevelopment. Key words: Desiccation-tolerance, germinability, seed development, castor bean  相似文献   

5.
6.
7.
Kermode, A. R. and Bewley, J. D. 1985. The role of maturationdrying in the transition from seed development to germination.1. Acquisition of desiccation–tolerance and germinabilityduring development of Ricinus communis L. seeds.—J. exp.Bot. 36: 1906–1915. Seeds of Ricinus communis L. cv. Hale(castor bean) undergo a transition from desiccation–intoleranceto desiccation–tolerance approximately midway throughtheir development. Tolerance of slow desiccation is gained overonly a few days of development (between 20 and 25 d) and isachieved well before the completion of major developmental events,such as reserve deposition and the onset of normal maturationdrying. A tolerance of very rapid water loss brought about bydrying over silica gel is not acquired by this seed until nearmaturity. Coincident with the acquisition of tolerance to slowdesiccation the seeds gain the capacity to germinate upon subsequentrehydration. Germinability and capacity for normal post–germinativegrowth during the tolerant phase are not fully expressed unlessthe seed is dried at an optimal rate, which is dependent uponthe developmental stage of the seed. Drying presumably actsto terminate developmental processes and to initiate those metabolicprocesses necessary to prepare the seed for germination andgrowth. Key words: Desiccation-tolerance, germinability, seed development, castor bean  相似文献   

8.
Proteins in the soluble and insoluble fractions, extracted frommature castor bean cv. Hale seed cotyledons, differ quantitativelyand qualitatively from their counterparts extracted from theendosperm. The soluble fraction contains no glycoproteins, andthe lectins RCA1 and ricin D are absent. While the insolubleproteins are electrophoretically and immunologically similarto those in the endosperm, they do not form the 100 kD subunitdimers which characterize some of the endosperm insoluble crystalloidproteins. Rapid rates of deposition of all of the soluble andinsoluble proteins present in the mature seed cotyledons commences30–35 d after pollination (DAP) and continues until 45DAP. These proteins are mobilized rapidly beginning 1–2d after seed imbibition and this coincides with an increasein specific activity, in the cotyledons, of two aminopeptidasesand a carboxypeptidase. The soluble and insoluble proteins inthe cotyledons of the mature seed probably function as storageproteins and support the growth of the germinated seed priorto the mobilization of the major protein storage reserves ofthe endosperm. Key words: Ricinus communis, Castor bean, Hale cultivar, Cotyledon, Storage protein, Seed development, Seed germination  相似文献   

9.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

10.
11.
Immature seeds of Phaseolus vulgaris removed from the pod at 32 days of development do not germinate unless first subjected to a desiccation treatment. This change from development to germination caused by premature drying is mirrored in the pattern of protein synthesis by the axes. Rehydrated axes from 32-day-developed seeds cease to synthesize proteins that are uniquely associated with development, but instead synthesize some proteins that are similar to those made in the germinating axes from mature dry seeds. Desiccation of 22-day-developed seeds does not lead to their germination, nor does it cause a switch from a developmental to a germination mode of protein synthesis by the axes. It is proposed that desiccation plays a role in permanently suppressing developmental protein synthesis and in inducing germination protein synthesis.  相似文献   

12.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

13.
Drying of seeds at certain stages prior to maturation, i.e.premature desiccation, will terminate synthetic events uniqueto development, for example, storage protein synthesis, andinitiate processes associated with germination. In this studywe have investigated the role of desiccation in the expressionof a storage protein gene, ß-phaseolin, to determineif such a developmentally-regulated gene remains sensitive todrying when controlled by a promoter that has no known sensitivityto this treatment. We compared, in transgenic tobacco seeds,the effects of maturation and premature drying on the expressionof a full ß-phaseolin gene, and ß-phaseolingenes driven by a cauliflower mosaic virus 35S promoter withor without an alfalfa mosaic virus (AMV) 5' untranslated leadersequence. The results indicate that the ß-phaseolinpromoter is directly down-regulated by desiccation during maturationand, although activated during the drying phase of a prematuredesiccation event, it is not active upon rehydration or imbibition.The 35S promoter is down-regulated also by both maturation dryingand premature desiccation but unlike the ß-phaseolinpromoter it is reactivated upon rehydration or imbibition. Key words: Desiccation, ß-phaseolin, gene regulation, Phoseolus vulgaris, seed development  相似文献   

14.
Freshly harvested, developing kernels of maize (Zea mays L.)do not germinate up to 77 d after pollination, but can be inducedto do so by fluridone, premature desiccation, and isolationof the developing embryo. The pattern of protein synthesis indeveloping maize embryos is distinct from that during germinationand subsequent seedling growth. Premature desiccation at 35DAP elicits a pattern of protein synthesis upon rehydrationwhich is similar to that in germinated embryos from mature drykernels. Fluridone-induced viviparous germination is accompaniedby changes in the synthesis of some proteins to a post-germinativepattern, but some developmental proteins continue to be synthesized.Embryos isolated from developing kernels at 35 DAP germinatewhen incubated on water; they also produce some developmentalproteins during germination. Kernels from developing cobs at35 DAP which are detached from the mother plant and maintainedin an atmosphere of high relative humidity (moist controls)do not germinate, but neither do they continue a clearly definedpattern of either developmental or germinative protein synthesis.Drying is thus critical to effect a clear transition of proteinsynthesis from a developmental to a germinative mode in maizeembryos. Abscisic acid within the developing embryos is reduced by fluridone,but to a lesser extent by premature drying or maturation drying.Changes in sensitivity to abscisic acid by the developing embryomay be as, or more, important in permitting germination, andthe attendant synthesis of proteins, than changes in abscisicacid content. Key words: Maize (Zea mays L.), germination, vivipary, desiccation, abscisic acid  相似文献   

15.
A single-chain Fv antibody (scFv) gene, which has previously been used to immunomodulate abscisic acid (ABA) activity in transgenic tobacco to create a 'wilty' phenotype, was put under control of the seed-specific USP promoter from Vicia faba and used to transform tobacco. Transformants were phenotypically similar to wild-type plants apart from their seeds. Anti-ABA scFv embryo development differed markedly from wild-type embryo development. Seeds which accumulated similar levels of a scFv that binds to oxazolone, a hapten absent from plants, developed like wild-type embryos. Anti-ABA scFv embryos developed green cotyledons containing chloroplasts and accumulated photosynthetic pigments but produced less seed storage protein and oil bodies. Anti-ABA scFv seeds germinated precociously if removed from seed capsules during development but were incapable of germination after drying. Total ABA levels were higher than in wild-type seeds but calculated free ABA levels were near-zero until 21 days after pollination. We show for the first time seed-specific immunomodulation and the resulting switch from the seed maturation programme to a germination programme. We conclude that the immunomodulation of hormones can alter the development programme of target organs, allowing the study of the directly blocked endogenous molecules and manipulation of the system concerned.  相似文献   

16.
Misra, S. and Bewley, J. D. 1986. Desiccation of Phaseolus vulgansseeds during and following germination, and its effect uponthe translatable mRNA population of the seed axes.—J.exp. BoL 37: 364–374. After imbibition and germination, seeds of P. vulgaris passfrom a stage where they are insensitive to desiccation to astage where they are sensitive. Desiccation of seeds duringthe sensitive stage results in an almost total impairment ofprotein synthesis upon subsequent rehydration. Seeds desiccatedduring the desiccation-tolerant stage, however, resume proteinsynthesis at almost control levels. The protein patterns obtained following in Vitro translationof bulk RNA from fresh imbibed, desiccated, and desiccated-rehydratedseed axes were qualitatively similar at 5 HAI (the desiccation-tolerant stage). The drying treatment resulted in increasedintensity of extant proteins at 5 and 12 HAI. At 12 HAI (thetransition stage between the desiccation-tolerant and desiccation-intolerantphases) desiccation and subsequent rehydration triggered synthesisof a unique set of proteins-the rehydration proteins. At 20HAI (the desiccation-intolerant stage) desiccation resultedin an overall decline in the intensity of proteins synthesizedin vitro. Also the rehydration proteins were not synthesizedin response to a drying and rehydration treatment at this time. Key words: Seed germination, desiccation, mRNA, in vitro translation, Phaseolus vulgaris  相似文献   

17.
玉米种子萌发能力和耐脱水能力的形成   总被引:7,自引:0,他引:7  
以玉米品种“粤单9117”为材料,研究了种子发育过程中萌发能力和耐脱水能力的获得。玉米种子的生理成熟期约为43DAP(授粉后天数)。胚萌发能力的获得是在14-21DAP、耐脱水能力的获得出现在25-28DAP。胚的耐脱水能力在28DAP后仍不断得到加强。耐脱水能力的获得与细胞膜的发育及受保护的程度密切相关。脱水有利于不同发育时期的胚和种子的萌发。  相似文献   

18.
The responses of Q. robur L. fruits, seeds and embryonic axesto desiccation are characterized and discussed in relation tocurrent knowledge of recalcitrant seed behaviour. A relationshipbetween viability and seed moisture content is described. Thisrelationship was unaffected by rate of drying, year of harvestor presence of the pericarp. Desiccation sensitivity did notincrease with storage. Excised embryonic axes survived to lower moisture contents thanintact seeds. However, in the intact seed, loss of viabilityappeared to be determined by a critical moisture content inthe cotyledons. Consequently, the level of desiccation tolerancewithin the axis attached to cotyledons was not determined byaxis drying rate. A link is drawn between the difference in the desiccation toleranceof embryonic axes and of cotyledons, and estimates of theirdifferent levels of matrix-bound water. The results presentedare consistent with a critical moisture content for survivalwhich is determined by the loss of all free cellular water.This hypothesis takes account of the differential desiccationsensitivity of seed tissues and differences in desiccation tolerancebetween species.  相似文献   

19.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号