首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chen Y  Magnani D  Theil T  Pratt T  Price DJ 《PloS one》2012,7(3):e33105
Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors.  相似文献   

2.
During development, most thalamocortical axons extend through the deep layers to terminate in layer 4 of neocortex. To elucidate the molecular mechanisms that underlie the formation of layer-specific thalamocortical projections, axon outgrowth from embryonic rat thalamus onto postnatal neocortical slices which had been fixed chemically was used as an experimental model system. When the thalamic explant was juxtaposed to the lateral edge of fixed cortical slice, thalamic axons extended farther in the deep layers than the upper layers. Correspondingly, thalamic axons entering from the ventricular side extended farther than those from the pial side. In contrast, axons from cortical explants cultured next to fixed cortical slices tended to grow nearly as well in the upper as in the deep layers. Biochemical aspects of lamina-specific thalamic axon growth were studied by applying several enzymatic treatments to the cortical slices prior to culturing. Phosphatidylinositol phospholipase C treatment increased elongation of thalamic axons in the upper layers without influencing growth in the deep layers. Neither chondroitinase, heparitinase, nor neuraminidase treatment influenced the overall projection pattern, although neuraminidase slightly decreased axonal elongation in the deep layers. These findings suggest that glycosylphosphatidylinositol-linked molecules in the cortex may contribute to the laminar specificity of thalamocortical projections by suppressing thalamic axon growth in the upper cortical layers.  相似文献   

3.
The development of connections between thalamic afferents and their cortical target cells occurs in a highly precise manner. Thalamic axons enter the cortex through deep cortical layers, then stop their growth in layer 4 and elaborate terminal arbors specifically within this layer. The mechanisms that underlie target layer recognition for thalamocortical projections are not known. We compared the growth pattern of thalamic explants cultured on membrane substrates purified from cortical layer 4, the main recipient layer for thalamic axons, and cortical layer 5, a non-target layer. Thalamic axons exhibited a reduced growth rate and an increased branching density on their appropriate target membranes compared with non-target substrate. When confronted with alternating stripes of both membrane substrates, thalamic axons grew preferentially on their target membrane stripes. Enzymatic treatment of cortical membranes revealed that growth, branching and guidance of thalamic axons are independently regulated by attractive and repulsive cues differentially expressed in distinct cortical layers. These results indicate that multiple membrane-associated molecules collectively contribute to the laminar targeting of thalamic afferents. Furthermore, we found that interfering with the function of Eph tyrosine kinase receptors and their ligands, ephrins, abolished the preferential branching of thalamic axons on their target membranes, and that recombinant ephrin-A5 ligand elicited a branch-promoting activity on thalamic axons. We conclude that interactions between Eph receptors and ephrins mediate branch formation of thalamic axons and thereby may play a role in the establishment of layer-specific thalamocortical connections.  相似文献   

4.
The functional architecture of the cerebral cortex is based on intrinsic connections that precisely link neurons from distinct cortical laminae as well as layer-specific afferent and efferent projections. Experimental strategies using in vitro assays originally developed by Friedrich Bonhoeffer have suggested that positional cues confined to individual layers regulate the assembly of local cortical circuits and the formation of thalamocortical projections. One of these wiring molecules is ephrinA5, a ligand for Eph receptor tyrosine kinases. EphrinA5 and Eph receptors exhibit highly dynamic expression patterns in distinct regions of the cortex and thalamus during early and late stages of thalamocortical and cortical circuit formation. In vitro assays suggest that ephrinA5 is a multifunctional wiring molecule for different populations of cortical and thalamic axons. Additionally, the expression patterns of ephrinA5 during cortical development are consistent with this molecule regulating, in alternative ways, specific components of thalamic and cortical connectivity. To test this directly, the organization of thalamocortical projections was examined in mice lacking ephrinA5 gene expression. The anatomical studies in ephrinA5 knockout animals revealed a miswiring of limbic thalamic projections and changes in neocortical circuits that were predicted from the expression pattern and the in vitro analysis of ephrinA5 function.  相似文献   

5.
During development, most thalamocortical axons extend through the deep layers to terminate in layer 4 of neocortex. To elucidate the molecular mechanisms that underlie the formation of layer‐specific thalamocortical projections, axon outgrowth from embryonic rat thalamus onto postnatal neocortical slices which had been fixed chemically was used as an experimental model system. When the thalamic explant was juxtaposed to the lateral edge of fixed cortical slice, thalamic axons extended farther in the deep layers than the upper layers. Correspondingly, thalamic axons entering from the ventricular side extended farther than those from the pial side. In contrast, axons from cortical explants cultured next to fixed cortical slices tended to grow nearly as well in the upper as in the deep layers. Biochemical aspects of lamina‐specific thalamic axon growth were studied by applying several enzymatic treatments to the cortical slices prior to culturing. Phosphatidylinositol phospholipase C treatment increased elongation of thalamic axons in the upper layers without influencing growth in the deep layers. Neither chondroitinase, heparitinase, nor neuraminidase treatment influenced the overall projection pattern, although neuraminidase slightly decreased axonal elongation in the deep layers. These findings suggest that glycosylphosphatidylinositol‐linked molecules in the cortex may contribute to the laminar specificity of thalamocortical projections by suppressing thalamic axon growth in the upper cortical layers. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 56–68, 2000  相似文献   

6.
Grove EA 《Neuron》2005,48(4):522-524
Normal brain function requires the development of precise connections between thalamus and cerebral cortex. In this issue of Neuron, Cang et al. and Tori and Levitt argue that EphA/ephrin-A signaling in the target tissue guides sensory thalamic axons to the correct cortical area, and sensory cortical axons to precise thalamic targets. Although EphA/ephrin-A signaling organizes sensory maps within areas, and thalamocortical axons in the internal capsule, both papers argue that each developmental event is dissociable from the others.  相似文献   

7.
The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.  相似文献   

8.
The visual cortex in primates is parcellated into cytoarchitectonically, physiologically, and connectionally distinct areas: the striate cortex (V1) and the extrastriate cortex, consisting of V2 and numerous higher association areas [1]. The innervation of distinct visual cortical areas by the thalamus is especially segregated in primates, such that the lateral geniculate (LG) nucleus specifically innervates striate cortex, whereas pulvinar projections are confined to extrastriate cortex [2--8]. The molecular bases for the parcellation of the visual cortex and thalamus, as well as the establishment of reciprocal connections between distinct compartments within these two structures, are largely unknown. Here, we show that prospective visual cortical areas and corresponding thalamic nuclei in the embryonic rhesus monkey (Macaca mulatta) can be defined by combinatorial expression of genes encoding Eph receptor tyrosine kinases and their ligands, the ephrins, prior to obvious cytoarchitectonic differentiation within the cortical plate and before the establishment of reciprocal connections between the cortical plate and thalamus. These results indicate that molecular patterns of presumptive visual compartments in both the cortex and thalamus can form independently of one another and suggest a role for EphA family members in both compartment formation and axon guidance within the visual thalamocortical system.  相似文献   

9.
The neurotransmitter acetylcholine (ACh) is expressed in the developing telencephalon at the time when thalamic axons project to the cortex, long before synapses are being formed. Since previous studies demonstrated an influence of ACh on neurite extension we used different in vitro assays to examine possible effects of ACh on the growth of thalamic axons. In explant cultures, application of ACh reduced the length of thalamic axons in a dose dependent manner, an effect that could also be evoked by selective muscarinic and nicotinic agonists. Time-lapse imaging of thalamic axons exposed to microscopic gradients of ACh revealed that growth cones no longer advanced, but maintained high filopodial activity. This growth cone pausing was not accompanied by axon retraction or growth cone collapse. It could at least partially be blocked by muscarinic and nicotinic antagonists, indicating that both types of ACh receptors contribute to mediate these effects on thalamic axons. Finally, we also found that ACh changed the morphology of growth cones; they became larger and extended more filopodia. Since such changes in the structure and motility of growth cones are observed at decision regions along the path of many fiber populations including thalamic axons, we suggest that ACh plays a role during the elaboration of thalamocortical projections.Key words: cortical development, thalamocortical projections, neurotransmitter, acetylcholine, growth cone, axonal guidance, wiring molecules  相似文献   

10.
Lambe EK  Aghajanian GK 《Neuron》2003,40(1):139-150
In vivo, thalamocortical axons are susceptible to the generation of terminal spikes which antidromically promote bursting in the thalamus. Although neurotransmitters could elicit such ectopic action potentials at thalamocortical boutons, this hypothesis has never been confirmed. Prefrontal cortex is the cortical area most implicated in arousal and is innervated by thalamic neurons that are unusual since they burst rhythmically during waking. We show that a neurotransmitter critical for alertness, hypocretin (orexin), directly excites prefrontal thalamocortical synapses in acute slice. This TTX-sensitive activation of thalamic axons was demonstrated electrophysiologically and by two-photon sampling of calcium transients at single spines in apposition to thalamic boutons anterogradely labeled in vivo. Spines receiving these long-range projections constituted a unique population in terms of the presynaptic excitatory action of hypocretin. By this mechanism, the hypocretin projection to prefrontal cortex may play a larger role in prefrontal or "executive" aspects of alertness and attention than previously anticipated.  相似文献   

11.
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.  相似文献   

12.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

13.
We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.  相似文献   

14.
The dorsal lateral geniculate nucleus (dLGN) serves as the primary conduit of retinal information to visual cortex. In addition to retinal input, dLGN receives a large feedback projection from layer VI of visual cortex. Such input modulates thalamic signal transmission in different ways that range from gain control to synchronizing network activity in a stimulus-specific manner. However, the mechanisms underlying such modulation have been difficult to study, in part because of the complex circuitry and diverse cell types this pathway innervates. To address this and overcome some of the technical limitations inherent in studying the corticothalamic (CT) pathway, we adopted a slice preparation in which we were able to stimulate CT terminal arbors in the visual thalamus of the mouse with blue light by using an adeno-associated virus to express the light-gated ion channel, ChIEF, in layer VI neurons. To examine the postsynaptic responses evoked by repetitive CT stimulation, we recorded from identified relay cells in dLGN, as well as GFP expressing GABAergic neurons in the thalamic reticular nucleus (TRN) and intrinsic interneurons of dLGN. Relay neurons exhibited large glutamatergic responses that continued to increase in amplitude with each successive stimulus pulse. While excitatory responses were apparent at postnatal day 10, the strong facilitation noted in adult was not observed until postnatal day 21. GABAergic neurons in TRN exhibited large initial excitatory responses that quickly plateaued during repetitive stimulation, indicating that the degree of facilitation was much larger for relay cells than for TRN neurons. The responses of intrinsic interneurons were smaller and took the form of a slow depolarization. These differences in the pattern of excitation for different thalamic cell types should help provide a framework for understanding how CT feedback alters the activity of visual thalamic circuitry during sensory processing as well as different behavioral or pathophysiological states.  相似文献   

15.
The development of cortical layers, areas and networks is mediated by a combination of factors that are present in the cortex and are influenced by thalamic input. Electrical activity of thalamocortical afferents has a progressive role in shaping cortex. For early thalamic innervation and patterning, the presence of activity might be sufficient; for features that develop later, such as intracortical networks that mediate emergent responses of cortex, the spatiotemporal pattern of activity often has an instructive role. Experiments that route projections from the retina to the auditory pathway alter the pattern of activity in auditory thalamocortical afferents at a very early stage and reveal the progressive influence of activity on cortical development. Thus, cortical features such as layers and thalamocortical innervation are unaffected, whereas features that develop later, such as intracortical connections, are affected significantly. Surprisingly, the behavioural role of 'rewired' cortex is also influenced profoundly, indicating the importance of patterned activity for this key aspect of cortical function.  相似文献   

16.
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.  相似文献   

17.
Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical patterning and the establishment of areal boundaries in early development; however, the nature of the interaction between intrinsic and extrinsic processes is not well understood. In a previous study, we used a perinatal bilateral enucleation mouse model to test some aspects of this interaction by reweighting sensory input to the developing cortex. Visual deprivation at birth resulted in a shift of intraneocortical connections (INCs) that aligned with ectopic ephrin A5 expression in the same location ten days later at postnatal day (P) 10. A prevailing question remained: Does visual deprivation first induce a change in gene expression, followed by a shift in INCs, or vice versa? In the present study, we address this question by investigating the neuroanatomy and patterns of gene expression in post-natal day (P) 1 and 4 mice following bilateral enucleation at birth. Our results demonstrate a rapid reduction in dorsal lateral geniculate nucleus (dLGN) size and ephrin A5 gene expression 24-hours post-enucleation, with more profound effects apparent at P4. The reduced nuclear size and diminished gene expression mirrors subtle changes in ephrin A5 expression evident in P1 and P4 enucleated neocortex, 11 and 8 days prior to natural eye opening, respectively. Somatosensory and visual INCs were indistinguishable between P1 and P4 mice bilaterally enucleated at birth, indicating that perinatal bilateral enucleation initiates a rapid change in gene expression (within one day) followed by an alteration of sensory INCs later on (second postnatal week). With these results, we gain a deeper understanding of how gene expression and sensory input together regulate cortical arealization and plasticity during early development.  相似文献   

18.
The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice1, we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation.  相似文献   

19.
All neocortical areas receive thalamic inputs. Some thalamocortical pathways relay information from ascending pathways (first order thalamic relays) and others relay information from other cortical areas (higher order thalamic relays), thus serving a role in corticocortical communication. Most, possibly all, afferents reaching thalamus, ascending and cortical, are branches of axons that innervate lower (motor) centers, so that thalamocortical pathways can be viewed generally as monitors of ongoing motor instructions. In terms of numbers, the thalamic relay is dominated by synapses that modulate the relay functions. One of the roles of these modulatory pathways is to change the transfer of information through the thalamus, in accord with current attentional demands. Other roles remain to be explored. These modulatory functions can be expected to act on corticocortical communication in addition to their action on ascending pathways.  相似文献   

20.
We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号