首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Despite extensive research, no reliable biological marker for chronic fatigue syndrome (CFS) has yet been identified. However, hyperactivation of melanotrophs in the pituitary gland and increased levels of plasma alpha-melanocyte-stimulating hormone (α-MSH) have recently been detected in an animal model of chronic stress. Because CFS is considered to be caused partly by chronic stress events, increased α-MSH plasma levels may also occur in CFS patients. We therefore examined α-MSH levels in CFS patients.  相似文献   

2.
The present study was aimed at investigating whether PACAP stimulates accumulation of cAMP, as well as hormonal secretion of homogeneous populations of pituitary proopiomelanocortin (POMC) cells, namely melanotrophs and AtT-20 corticotrophs. PACAP was shown to enhance cAMP accumulation in a dose-dependent fashion in both cell types (with EC50 values of approx. 10(-10) M) and elicited additive increases of cAMP production with CRF in melanotrophs, but not in corticotrophs. PACAP also stimulated dose-dependently the secretion of alpha-MSH and ACTH, with EC50 concentrations of about 10(-9) M. In melanotrophs, bromocriptine significantly depressed PACAP-induced cAMP formation and blunted by more than 90% stimulated alpha-MSH release. This study shows that (1) pituitary POMC cells did respond to PACAP by enhancing cAMP accumulation and elevating hormone secretion as well; (2) the effect of PACAP was additive with CRF on cAMP production in melanotrophs, but not in corticotrophs, while there was no additivity on peptide output from both cell types; (3) activation of dopamine receptors in melanotrophs dampened both cAMP formation and peptide secretion. These findings are consistent with PACAP playing a possible hypophysiotropic role in the regulation of pituitary POMC cell activity.  相似文献   

3.
Summary A Stereological analysis has been made of the daily changes occurring in the ultrastructure of the melanotrophs of the pars intermedia of the pituitary gland of the Djungarian or Siberian hamster, Phodopus sungorus, maintained in long day photoperiods. The rough endoplasmic reticulum, Golgi apparatus and lysosomes all declined in fractional volume throughout the photophase reaching minima at mid-scotophase and rising to reach their maxima at about the time of onset of the photophase. The mitochondria reached their peak fractional volume just before the cessation of the photophase but then also declined to a minimum at mid-scotophase. No significant changes were found to occur in the fractional volumes of the nucleus or the secretory granules. These morphological findings are compared with the changes in plasma and pituitary -melanocyte-stimulating hormone levels found in the rat.Supported in part by the Medical Research Council (Project Grant G978-398/C to BW)  相似文献   

4.
The formation of secretory granules in chronically hypersecretory melanotrophs in the rat pituitary was studied. Hypersecretion was induced by treatment with the dopamine antagonist haloperidol (1.5 mg/kg daily for 7 days), which releases the normal neural dopaminergic inhibition of secretion from the melanotroph. Morphometric analysis showed a 100% increase in the volume fraction of granular endoplasmic reticulum after haloperidol treatment, while the volume fractions of electron-dense granules, electron-lucent granules and the Golgi apparatus were unaltered. The mean diameter of the mature secretory granules was increased by 10%, indicating a 30% increase in mean granule volume. A similar increase in diameter was observed in condensing granules within the Golgi area. With earlier results on the effect of chronic inhibition the study shows that a main adaptive response of the melanotroph to altered secretory conditions is a change in the volume of the secretory granules, regulated by a mechanism that operates at an early stage of granule formation.  相似文献   

5.
It was shown previously that abnormal prohormone processing or inactive proconverting enzymes that are responsible for this processing cause profound obesity. Our laboratory demonstrated earlier that in the diet-induced obesity (DIO) state, the appetite-suppressing neuropeptide α-melanocyte-stimulating hormone (α-MSH) is reduced, yet the mRNA of its precursor protein proopiomelanocortin (POMC) remained unaltered. It was also shown that the DIO condition promotes the development of endoplasmic reticulum (ER) stress and leptin resistance. In the current study, using an in vivo model combined with in vitro experiments, we demonstrate that obesity-induced ER stress obstructs the post-translational processing of POMC by decreasing proconverting enzyme 2, which catalyzes the conversion of adrenocorticotropin to α-MSH, thereby decreasing α-MSH peptide production. This novel mechanism of ER stress affecting POMC processing in DIO highlights the importance of ER stress in regulating central energy balance in obesity.  相似文献   

6.
A synthetic peptide (ST-1) corresponding to the cleavage site between ACTH and beta-lipotropic hormone moieties of murine pro-opiomelanocortin (POMC) was constructed and its polyclonal antibody was generated. This antiserum immunoprecipitated only POMC from extracts of AtT-20 cells. Moreover, an antiserum raised against porcine ACTH immunoprecipitated both ACTH[1-39] and POMC. When ultra-thin frozen sections of melanotrophs in rat pars intermedia were immunolabeled with anti-ST-1 followed by protein A-gold, gold particles indicating the presence of POMC were selectively found in the electron-dense secretory granules in the Golgi area. In addition, the immunolabeling was also observed in the cisternae of the Golgi apparatus and rough endoplasmic reticulum. In contrast, with a polyclonal antibody specific for alpha-melanocyte-stimulating hormone the gold particles were found exclusively in the electron-lucent secretory granules, with none seen in the electron-dense secretory granules. With anti-ACTH serum, gold particles were observed in the electron-dense and -lucent secretory granules. In corticotrophs in the pars distalis, many gold particles indicating the presence of POMC were observed in the Golgi and peripheral secretory granules, but the percentage of immunolabeling in the peripheral secretory granules varied from cell to cell. On the other hand, ACTH immunolabeling was found in almost all the secretory granules. This finding suggests that the processing of POMC in corticotrophs might occur in the relatively peripheral granules. These results suggest that the intracellular sites of POMC processing are somewhat different between melanotrophs and corticotrophs in the pituitary.  相似文献   

7.
Under continuous stress (CS) in rats, melanotrophs, the predominant cell-type in the intermediate lobe (IL) of the pituitary, are hyperactivated to secrete α-melanocyte-stimulating hormone and thereafter degenerate. Although these phenomena are drastic, the molecular mechanisms underlying the cellular changes are mostly unknown. In this study, we focused on the pancreatitis-associated protein (PAP) family members of the secretory lectins and characterized their expression in the IL of CS model rats because we had identified two members of this family as up-regulated genes in our previous microarray analysis. RT-PCR and histological studies demonstrated that prominent PAP-I and PAP-II expression was induced in melanotrophs in the early stages of CS, while another family member, PAP-III, was not expressed. We further examined the regulatory mechanisms of PAP-I and PAP-II expression and revealed that both were induced by the decreased dopamine levels in the IL under CS. Because the PAP family members are implicated in cell survival and proliferation, PAP-I and PAP-II secreted from melanotrophs may function to sustain homeostasis of the IL under CS conditions in an autocrine or a paracrine manner.  相似文献   

8.
Summary The spontaneous dwarf rat is a novel experimental model animal on the study of pituitary dwarfism. The fine structure of the anterior pituitary cells was studied in the immature and mature dwarf rats. Pituitary glands were removed from 5-, 10-, 20-day-old immature dwarfs, adult (45 days-16 weeks) dwarfs and normal 3-month-old rats and processed for electron-microscopic observation. In the control animals, growth hormone cells were readily identified by their ultrastructural characteristics, such as the presence of numerous electron-dense secretory granules, 300–350 nm in diameter, well developed rough endoplasmic reticulum and a prominent Golgi complex. In contrast, growth hormone cells were not found in the anterior pituitary gland of the spontaneous dwarf rat at any age examined. Other pituitary cell types, i.e., luteinizing hormone/ follicle stimulating hormone, thyroid stimulating hormone, adrenocorticotropic hormone and prolactin cells, appeared similar in their fine structure to those found in the control rats. In the pituitary gland of dwarf rats, a number of polygonal cells were observed either with no or relatively few secretory granules. The rough endoplasmic reticulum was arranged in parallel cisternae and the Golgi complex was generally prominent in these cells. In addition, many were found to have abundant lysosomes. A few minute secretory granules were occasionally observed; however, the immunogold technique failed to localize growth hormone or prolactin in the granules. The nature of these cells remained obscure in this study. Since their incidence and fine structural features, other than the secretory granules, were quite similar to those of the growth hormone cells in normal rats, we postulate that these cells are dysfunctional growth hormone cells. These results suggest that the cause of the growth impairment in the spontaneous dwarf rat is due to a defect in the functional growth hormone cells in the pituitary gland, and since other pituitary cell types appeared normal, the disorder seems to be analogous to the isolated growth hormone deficiency in the human.  相似文献   

9.
The localization of 5α-reductase was immunohistochemically studied in the anterior pituitary of male rats, using a polyclonal antibody against 5α-reductase rat type 1. The immunoreactive cells were concentrated in the central region and on the border of the intermediate lobe in the anterior pituitary, but not in the intermediate or posterior lobe. The immunoreaction was located mostly in the cytoplasm and occasionally in the cell nuclei. The immunoreactive cells showed alterations in size and number and in the intensity of the immunoreaction after gonadectomy. One week after castration, the cells became larger and the immunoreactivity increased. Two weeks after castration, the number of immunoreactive cells increased. Double immunostaining using antiluteinizing hormone β-subunit or anti-follicle stimulating hormone β-subunit antibody revealed that most of the cells containing 5α-reductase were gonadotrophs. Electron microscopically, the immunoreactive cells showed lamelliform rough endoplasmic reticulum and a depletion of secretory granules 1 week after castration. One week later, the rough endoplasmic reticulum was developed and dilated and the number of secretory granules increased. These results suggest that 5α-reductase is located in the gonadotrophs of rat anterior pituitary and that it is involved in the feedback regulation of gonadotropin secretion by androgens.  相似文献   

10.
Anterior pituitary glands were homografted into the anterior chamber of the eye in female rats. The pituitary grafts survived and were well vascularized three weeks after the transplantation. The prolactin cells were morphologically active as shown by their well-developed Golgi complexes and granular endoplasmic reticulum and the exocytosis of secretory granules. The injection of dopamine into the common carotid artery of the graft-bearing rat rapidly suppressed the granule extrusion and then gradually induced a remarkable morphological atrophy in the prolactin cells.  相似文献   

11.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

12.
Rab3a is a small GTPase of the Rab3 subfamily that acts during late stages of Ca2+-regulated exocytosis. Previous functional analysis in pituitary melanotrophs described Rab3a as a positive regulator of Ca2+-dependent exocytosis. However, the precise role of the Rab3a isoform on the kinetics and intracellular [Ca2+] sensitivity of regulated exocytosis, which may affect the availability of two major peptide hormones, α-melanocyte stimulating hormone (α-MSH) and β-endorphin in plasma, remain elusive. We employed Rab3a knock-out mice (Rab3a KO) to explore the secretory phenotype in melanotrophs from fresh pituitary tissue slices. High resolution capacitance measurements showed that Rab3a KO melanotrophs possessed impaired Ca2+-triggered secretory activity as compared to wild-type cells. The hampered secretion was associated with the absence of cAMP-guanine exchange factor II/ Epac2-dependent secretory component. This component has been attributed to high Ca2+-sensitive release-ready vesicles as determined by slow photo-release of caged Ca2+. Radioimmunoassay revealed that α-MSH, but not β-endorphin, was elevated in the plasma of Rab3a KO mice, indicating increased constitutive exocytosis of α-MSH. Increased constitutive secretion of α-MSH from incubated tissue slices was associated with reduced α-MSH cellular content in Rab3a-deficient pituitary cells. Viral re-expression of the Rab3a protein in vitro rescued the secretory phenotype of melanotrophs from Rab3a KO mice. In conclusion, we suggest that Rab3a deficiency promotes constitutive secretion and underlies selective impairment of Ca2+-dependent release of α-MSH.  相似文献   

13.
Abstract— The amount of α-melanocyte-stimulating hormone (α-MSH) in the entire hypothalamus as well as the amount of α-MSH in free granule and synaptosome fractions of hypothalamic homogenates was investigated throughout the lifespan of female rats (1-24 months). A 900 g supernatant fluid was prepared from hypothalami following homogenization in an iso-osmotic sucrose solution, and free granules and synaptosomes containing α-MSH were fractionated by means of continuous sucrose density gradient centrifugation. α-MSH was quantified by radioimmunoassay. The total amount of α-MSH in the hypothalamus, as well as the amount in free granules and synaptosomes prepared from hypothalami increased progressively from the 1st to the 5th month of life, and this increase was more pronounced in the free granules than in the synaptosomes. On the other hand, the amount of α-MSH in the hypothalamus and the amount present in free granules and synaptosomes prepared from 5-24-month-old animals decreased with age, and this decrease appeared to proceed at similar rates in both subcellular compartments. Based on these results, it is suggested that ageing of α-MSH neurons in the hypothalamus is accompanied by a degeneration of the axons and/or an alteration in the biosynthetic and degradative activities of the neuron.  相似文献   

14.
15.
-Melanocyte-stimulating hormone (-MSH) is a pituitary hormone derived by post-translational processing from proopiomelanocortin and is involved in background adaptation in teleost fish. It has also been reported to suppress food intake in mammals. Here, we examined the immunocytochemical localization of -MSH in the brain and pituitary of a pleuronectiform fish, the barfin flounder (Verasper moseri), as a first step in unraveling the possible function of -MSH in the brain. The ontogenic development of the -MSH system was also studied. In the pituitary, -MSH-immunoreactive (ir) cells were preferentially detected in the pars intermedia. In the brain, -MSH-ir neuronal somata were located in the nucleus tuberis lateralis of the basal hypothalamus, and -MSH-ir fibers were located mainly in the telencephalon, hypothalamus, and midbrain. -MSH-ir neuronal somata did not project their axons to the pituitary. The -MSH-ir neurons differed from those immunoreactive to melanin-concentrating hormone. -MSH cells in the pituitary and -MSH-ir neuronal somata in the brain were first detected 1 day and 5 days after hatching, respectively. The distribution of -MSH-ir cells, neuronal somata, and fibers showed a pattern similar to that in adult fish 30 days after hatching. These results indicate that the functions of -MSH in the brain and pituitary are different and that -MSH plays physiological roles in the early development of the barfin flounder. This study was supported in part by grants from the Regional Science Promotion Program Evolutional Research of the Japan Science and Technology Corporation, and the Yumekendo-Iwate Research and Promotion Project of the Iwate Prefectural Government Science and Technology Division to A.T.  相似文献   

16.
We have investigated the presence of ACTH, -MSH and β-endorphin, three peptides which derive from the multifunctional precursor protein proopiomelanocortin (POMC) in the brain of the rainbow trout Salmo gairdneri. Using both the indirect immunofluorescence and peroxidase-antiperoxidase techniques, a discrete group of positive cells was identified in the hypothalamus, within the anterior part of the nucleus lateralis tuberis. -MSH-containing neurons represented the most abundant immunoreactive subpopulation. Coexistence of -MSH, ACTH and β-endorphin was observed in the lateral part of the nucleus. ACTH- and β-endorphin-containing cells were mainly distributed in the rostral and caudal regions of the nucleus. In the medial portion of the nucleus lateralis tuberis, numerous cells were only stained for -MSH. Moderate to dense plexuses of immunoreactive fibers were observed in the ventral thalamus and the floor of the hypothalamus. Some of these fibers projected towards the pituitary. The concentrations of ACTH, -MSH and β-endorphin-like immunoreactivities were measured in microdissected brain regions by means of specific radioimmunoassays. Diencephalon, mesencephalon and medulla oblongata extracts gave dilution curves which were parallel to standard curves. The highest concentrations of POMC-derived peptides were found in the diencephalon (-MSH: 4.28±0.43 ng/mg prot.; ACTH: 1.08±0.09 ng/mg prot.; β-endorphin: 1.02±0.1 ng/mg prot.), while lower concentrations were detected in the mesencephalon, medulla oblongata and telencephalon. The present results demonstrate that various peptides derived from POMC coexist within the same cell bodies of the fish hypothalamus. Taken together, these data suggest that expression and processing of POMC in the fish brain is similar to that occurring in pituitary melanotrophs.  相似文献   

17.
Two immunocytochemical methods, immunoperoxidase and immunogold (IG), were used in an attempt to study the dynamic process of prolactin release from stimulated rat pituitary mammotrophs. The immunogold method was also used to localize other pituitary hormones including growth hormone, follicle-stimulating hormone, luteinizing hormone, and the neuropeptides substance P, neuropeptide tyrosine, leu-enkephalin, and atrial natriuretic factor in peripheral nerves. Light-microscopic immunoperoxidase staining of prolactin revealed a unique distribution of immunoreactive mammotrophs. Two groups of cells were seen, one centrally located and one forming a narrow peripheral rim on the gland. The two groups were separated by a zone of nonimmunoreactive cells. In addition, the distribution of immunoperoxidase-stained material was not uniform in all mammotrophs. In some, prolactin immunoreactive material was clumped near the nucleus (in the Golgi cisternae); in others it was more diffused within the cytoplasm (but immediately surrounding the cisternae of rough endoplasmic reticulum). After stimulation of mammotrophs, via suckling, prolactin-immunoreactive material was visualized in extracellular spaces. With immunogold methods, prolactin labelling was seen mainly in secretory granules; but some labelling of Golgi cisternae and rough endoplasmic reticulum also occurred. Immunogold labelling revealed that material immunoreactive for leu-enkephalin and atrial natriuretic factor was present in nerve terminals in the rat paracervical ganglion. Material immunoreactive for substance P and neuropeptide tyrosine was present in nerve terminals in the guinea pig heart. Thus, in some situations the immunoperoxidase technique was useful and helped to visualize "grossly" the presence of specific antigens, but it was inadequate for fine ultrastructural localization of these antigens. The immunogold technique was excellent for precise localization of antigens and especially for the detection of colocalization of different antigens. This method can be used in very different structures, such as the adenohypophysis and peripheral nervous tissue, without any modification except for the nature of the antibodies.  相似文献   

18.
A new melanotropin (MSH) was isolated from bovine pituitary extract by means of gel filtration, ion exchange chromatography, high performance liquid chromatography and paper electrophoresis. Amino terminal analysis, amino acid composition and tryptic hydrolysis were performed on the purified peptide. The peptide was found to contain the amino acid sequence of γ-MSH, a theoretical segment of the proopiomelanocortin molecule. However, theoretical segment of the proopiomelanocortin molecule. However, the new peptide differs from the γ-MSH in several major ways, thus it is designated a bovine δ-MSH or δb-MSH.  相似文献   

19.
Injection of 5-HTP induces a melanodisperson ; MSH cells are markedly stimulated :hormone synthesis (development of Golgi area and endoplasmic reticulum) and release (reduction of secretory granules) are observed. This stimulatory serotoninergic pathway seems antagonistic to the dopaminergic system that inhibits MSH secretion in the eel.  相似文献   

20.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号