首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Simian virus 40 maturation in cells harboring mutants deleted in the agnogene   总被引:13,自引:0,他引:13  
The predominant leader region of the late 16 S mRNAs of simian virus 40 encodes a histone-like, 61-amino acid, DNA-binding protein called the agnoprotein or LP1. To test the hypothesis that this protein facilitates assembly of viral minichromosomes into virions, we have studied the synthesis of virions in cells infected with mutants deleted in this region of the SV40 genome. We found that 220 S mature virions, indistinguishable from those of wild type, were produced in cells infected with these mutants. As in wild-type-infected cells, no assembly intermediates other than 75 S chromatin were observed. However, data obtained from both steady-state and pulse-chase labeling experiments indicated that cells infected with agnogene deletion mutants produced virions more slowly than cells infected with wild-type virus. Taken together with data showing that similar levels of virion proteins were present in the wild-type- and mutant-infected cells, these findings strongly suggest that LP1 plays a role in expediting virion assembly.  相似文献   

2.
S A Sedman  P J Good    J E Mertz 《Journal of virology》1989,63(9):3884-3893
Numerous viral and cellular RNAs are polycistronic, including several of the late mRNA species encoded by simian virus 40 (SV40). The functionally bicistronic major late 16S and functionally tricistronic major late 19S mRNA species of SV40 contain the leader-encoded open reading frames (ORFs) LP1, located upstream of the sequence encoding the virion protein VP1, and LP1*, located upstream of the sequence encoding the virion proteins VP2 and VP3. To determine how these leader ORFs affect synthesis of the virion proteins, monkey cells were transfected with viral mutants in which either the leader-encoded translation initiation signal was mutated or the length and overlap of the leader ORF relative to the ORFs encoding the virion proteins were altered. The levels of initiation at and leaky scanning past each initiation signal were determined directly by quantitative analysis of the viral proteins synthesized in cells transfected with these mutants. Novel findings from these experiments included the following. (i) At least one-third of ribosomes bypass the leader-encoded translation initiation signal, GCCAUGG, on the SV40 major late 16S mRNA. (ii) At least 20% of ribosomes bypass even the consensus translation initiation signal, ACCAUGG, when it is situated 10 bases from the 5' end on the major late 16S mRNA. (iii)O The presence of the leader ORF on the bicistronic 16S mRNA species reduces VP1 synthesis threefold relative to synthesis from a similar RNA that lacks it. (iv) At least half and possibly all VP1 synthesized from the bicistronic 16S mRNA species is made by a leaky scanning mechanism. (v) LP1 and VP1 are synthesized from the bicistronic 16S mRNA species at approximately equal molar ratios. (vi) Approximately half of the VP1 synthesized in SV40-infected cells is synthesized from the minor, monocistronic 16S mRNA even though it accounts for only 20% of the 16S mRNA present. (vii) The presence and site of termination of translation of the leader ORF on the late 19S mRNAs affect the relative as well as absolute rates of synthesis of VP2 and VP3.  相似文献   

3.
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.  相似文献   

4.
C Reynolds  D Birnby    M Chow 《Journal of virology》1992,66(3):1641-1648
Poliovirus mutants in neutralizing antigenic site 3B were constructed by replacing the glutamic acid residue at amino acid 74 of capsid protein VP2 (VP2074E), using site-specific mutagenesis methods. All viable mutants display small-plaque phenotypes. Characterization of these mutants indicates that capsid assembly is perturbed. Although the defect in capsid assembly reduces the yield of mutant virus particles per cell, the resultant assembled particle is wild-type-like in structure and infectivity. Analyses of capsid assembly intermediates show a transient accumulation of the unprocessed capsid protein precursor, P1, indicating that cleavage of the mutant P1 by the 3CD protease is retarded. The mutant VP0-VP3-VP1 complex generated upon P1 cleavage appears assembly competent, forming pentamer and empty capsid assembly intermediates and infectious virion particles. Although the structure of the infectious mutant virus is virtually identical with that of the wild-type virus, the thermal stability of the mutant virus is dramatically increased over that of the wild-type virus. Thus, mutations at this residue are pleiotropic, altering the kinetics of capsid assembly and generating a virus that is more thermostable and more resistant to neutralization by the site 3B monoclonal antibodies.  相似文献   

5.
D Trono  M B Feinberg  D Baltimore 《Cell》1989,59(1):113-120
The products of the human immunodeficiency virus (HIV) gag gene exist in a highly multimerized state in the mature virion. For that reason, they may represent a particularly suitable target for the generation of dominant negative mutants. A number of HIV site-directed Gag mutants did show interference with the production of infectious viral particles from cells in which they were cotransfected with a wild-type proviral DNA. Furthermore, cells constitutively expressing such HIV Gag mutants had an impaired ability to support HIV replication when infected with wild-type virus. The block was localized to the late stages of the virus life cycle. Such Gag variants could constitute prototypes for the development of anti-HIV intracellular immunization.  相似文献   

6.
7.
8.
Pomeranz LE  Blaho JA 《Journal of virology》2000,74(21):10041-10054
VP22, the 301-amino-acid phosphoprotein product of the herpes simplex virus type 1 (HSV-1) U(L)49 gene, is incorporated into the tegument during virus assembly. We previously showed that highly modified forms of VP22 are restricted to infected cell nuclei (L. E. Pomeranz and J. A. Blaho, J. Virol. 73:6769-6781, 1999). VP22 packaged into infectious virions appears undermodified, and nuclear- and virion-associated forms are easily differentiated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994). As VP22 packaging-associated undermodification is unique among HSV-1 tegument proteins, we sought to determine the role of VP22 during viral replication. We now show the following. (i) VP22 modification occurs in the absence of other viral factors in cell lines which stably express its gene. (ii) RF177, a recombinant HSV-1 strain generated for this study, synthesizes only the amino-terminal 212 amino acids of VP22 (Delta212). (iii) Delta212 localizes to the nucleus and incorporates into virions during RF177 infection of Vero cells. Thus, the carboxy-terminal region is not required for nuclear localization of VP22. (iv) RF177 synthesizes the tegument proteins VP13/14, VP16, and VHS (virus host shutoff) and incorporates them into infectious virions as efficiently as wild-type virus. However, (v) the loss of VP22 in RF177 virus particles is compensated for by a redistribution of minor virion components. (vi) Mature RF177 virions are identical to wild-type particles based on electron microscopic analyses. (vii) Single-step growth kinetics of RF177 in Vero cells are essentially identical to those of wild-type virus. (viii) RF177 plaque size is reduced by nearly 40% compared to wild-type virus. Based on these results, we conclude that VP22 is not required for tegument formation, virion assembly/maturation, or productive HSV-1 replication, while the presence of full-length VP22 in the tegument is needed for efficient virus spread in Vero cell monolayers.  相似文献   

9.
The two capsid proteins of minute virus of mice, VP1 and VP2, are generated from a single large open reading frame by alternate splicing of the capsid gene mRNA. Examination of the replication of a series of mutants that express only VP1, only VP2, or neither capsid protein demonstrates that VP2 is necessary for the accumulation and encapsidation of virus progeny single-stranded DNA. VP1 is dispensable for these functions but is required to produce an infectious virion. Virus that lacks VP1 binds to cells as efficiently as wild-type minute virus of mice but fails to initiate a productive infection. Because neither capsid protein is required for viral-DNA replication, these results suggest that virus lacking VP1 is blocked at a step during virus entry, subsequent to cell binding and prior to the initiation of DNA replication.  相似文献   

10.
We constructed insertion and deletion mutants with mutations within the adeno-associated virus (AAV) sequences of the infectious recombinant plasmid pSM620. Studies of these mutants revealed at least three AAV phenotypes. Mutants with mutations between 11 and 42 map units were partially or completely defective for rescue and replication of the AAV sequences from the recombinant plasmids (rep mutants). The mutants could be complemented by mutants with replication-positive phenotypes. The protein(s) that is affected in rep mutants has not been identified, but the existence of the rep mutants proves that at least one AAV-coded protein is required for viral DNA replication. Also, the fact that one of the rep mutant mutations maps within the AAV intron suggests that the intron sequences code for part of a functional AAV protein. Mutants with mutations between 63 and 91 map units synthesized normal amounts of AAV duplex DNA but could not generate single-stranded virion DNA (cap mutants). The cap phenotype could be complemented by rep mutants and is probably due to a defect in the major AAV capsid protein, VP3. This suggests that a preformed capsid or precursor is required for the accumulation of single-stranded AAV progeny DNA. Mutants with mutations between 48 and 55 map units synthesized normal amounts of AAV single-stranded and duplex DNA but produced substantially lower yields of infectious virus particles than wild-type AAV (lip mutants). The lip phenotype is probably due to a defect in the minor capsid protein, VPI, and suggests the existence of an additional (as yet undiscovered) AAV mRNA. Evidence is also presented for recombination between mutant AAV genomes during lytic growth.  相似文献   

11.
12.
Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid-dependent disassembly process is required for viral RNA release inside endosomes. To study the molecular determinants of viral resistance to acid-induced disassembly, six FMDV variants with increased resistance to acid inactivation were isolated. Infection by these mutants was more sensitive to drugs that raise the endosomal pH (NH(4)Cl and concanamycin A) than was infection by the parental C-S8c1 virus, confirming that the increase in acid resistance is related to a lower pH requirement for productive uncoating. Amino acid replacement N17D at the N terminus of VP1 capsid protein was found in all six mutants. This single substitution was shown to be responsible for increased acid resistance when introduced into an infectious FMDV clone. The increased resistance of this mutant against acid-induced inactivation was shown to be due to its increased resistance against capsid dissociation into pentameric subunits. Interestingly, the N17D mutation was located close to but not at the interpentamer interfaces. The mutants described here extend the panel of FMDV variants exhibiting different pH sensitivities and illustrate the adaptive flexibility of viral quasispecies to pH variations.  相似文献   

13.
E Mndez  C F Arias    S Lpez 《Journal of virology》1993,67(9):5253-5259
The infection of target cells by animal rotaviruses requires the presence of sialic acids on the cell surface. Treatment of the cells with neuraminidases or incubation of the viruses with some sialoglycoproteins, such as glycophorin A, greatly reduces virus binding, with the consequent reduction of viral infectivity. In this work, we report the isolation of animal rotavirus variants whose infectivity is no longer dependent on the presence of sialic acids on the cell surface. In addition, although these variants bind to glycophorin A as efficiently as the wild-type virus, this interaction no longer inhibit viral infectivity. These observations indicate that the initial interaction of the mutants with the cell occurs at a site different from the sialic acid-binding site located on VP8, the smaller trypsin cleavage product of VP4. Reassortant analysis showed that the mutant phenotype segregates with the VP4 gene. Neutralizing monoclonal antibodies directed to VP4 and VP7 were tested for their ability to neutralize the variants. Antibodies to VP7 and VP5, the larger trypsin cleavage product of VP4, neutralized the mutants as efficiently as the wild-type virus. In contrast, although antibodies to VP8 were able to bind to the mutants, they showed little or no neutralizing activity. The implications of these findings in rotavirus attachment to and penetration of epithelial cells in culture are discussed.  相似文献   

14.
15.
In infected cells, replication errors during viral proliferation generate mutations in adenoviruses (Ads), and the mutant Ads proliferate and evolve in the intracellular environment. Genetically fiber-modified recombinant Ads (rAd variants) were generated, by modification of the fiber gene, for therapeutic applications in host cells that lack or express reduced levels of the Coxsackievirus and adenovirus receptor. To assess the genetic modifications of rAd variants that might induce the instability of Ad virions, we examined the frequencies of mutants that accumulated in propagated stocks. Seven of 41 lines of Ad variants generated mutants in the stocks and all mutants were infectious. Moreover, all the mutations occurred in the modified region that had been added at the 3' end of the fiber gene. Our results show that some genetic modifications at the carboxyl terminus of Ad fiber protein lead to the instability of Ad virions.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U(L)49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a U(L)49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the U(L)49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and U(L)49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the U(L)49-null virus compared to infection with the wild-type and U(L)49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.  相似文献   

17.
The phenotypes of a series of mutant human immunodeficiency virus type 1 proviruses with linker insertion and deletion mutations within the gag coding region were characterized. These mutants were tested for their ability to make and release viral particles in COS7 cells and for their viability in vivo. Of the 12 mutant proviruses, 4 did not make extracellular virion particles when transfected into COS7 cells. All four of these mutants had mutations in the C-terminal domain of CA. These mutants appeared to have defects both in the ability to accumulate high-molecular-weight intracellular structures containing Gag and Pol products and in the ability to release virion particles. Seven of the mutant proviruses retained the ability to make, release, and process virion particles from COS7 cells. These particles contained the Env glycoprotein, viral genomic RNA, and the mature products of the Gag and Gag-Pol polyproteins, yet they were noninfectious or poorly infectious. The defect in these mutants appears to be in one of the early steps of the viral life cycle. Thus, multiple regions throughout Gag appear to be important in mediating the early steps of the viral life cycle.  相似文献   

18.
The phenotypic defects of two type 1 Mahoney poliovirus mutants, termed VP1-101 and VP1-102, were caused by two different small deletions in the region of the RNA genome encoding the amino terminus of the capsid protein VP1. This portion of VP1 was unresolved in the three-dimensional structure of the poliovirion, buried within the virion, and likely to interact with the viral RNA. Both VP1-101 and VP1-102 showed a diminished ability to enter CV1 but not HeLa cells; both mutants formed plaques on CV1 and HeLa cells that were smaller than wild type. Neither the rate of binding to cells nor the rate of subsequent receptor-dependent conformational change of the mutant poliovirions was affected. However, both mutants displayed delayed kinetics of RNA release compared with wild-type virus. One of the mutants, VP1-102, also displayed a defect in viral morphogenesis: 75S empty capsids formed normally, but 150S particles that contained RNA accumulated much more slowly. We suggest that the VP1-102 mutation affects RNA encapsidation as well as RNA release, whereas the VP1-101 mutation affects only RNA release. Therefore, RNA packaging and RNA release are genetically linked but can be mutated separately in different VP1 alleles, and both processes involve the amino terminus of VP1.  相似文献   

19.
Lee JI  Luxton GW  Smith GA 《Journal of virology》2006,80(24):12086-12094
The herpesvirus tegument is a layer of viral and cellular proteins located between the capsid and envelope of the virion. The VP1/2 tegument protein is critical for the propagation of all herpesviruses examined. Using an infectious clone of the alphaherpesvirus pseudorabies virus, we have made a collection of truncation and in-frame deletion mutations within the VP1/2 gene (UL36) and examined the resulting viruses for spread between cells. We found that the majority of the VP1/2 protein either was essential for virus propagation or did not tolerate large deletions. A recently described amino-terminal deubiquitinase-encoding domain was dispensable for alphaherpesvirus propagation, but the rate of propagation in an epithelial cell line and the frequency of transport in axons of primary sensory neurons were both reduced. We mapped one essential domain to a conserved sequence at the VP1/2 carboxy terminus and demonstrated that this domain sufficient to redirect the green fluorescent protein to capsid assemblons in nuclei of infected cells.  相似文献   

20.
The interaction between viral capsid protein (CP) and its cognate viral RNA modulates many steps in the virus infection cycle, such as replication, translation and assembly. The N-terminal 50 amino acids of the Red clover necrotic mosaic virus (RCNMV) CP are rich in basic residues (especially lysine) and are essential for the core functions of the CP, namely RNA binding and virion assembly. To further elucidate additional biological roles for these basic residues, a series of alanine substitution mutations was introduced into infectious clones of RCNMV RNA-1 and assayed for symptomatology, virion formation and systemic infection. Infectivity assays conducted in Nicotiana benthamiana revealed that all nine alanine substitution mutants (ASMs) were competent for systemic infection. Two ASMs (K4A and K7A/K8A) induced severe symptoms and delayed the systemic spread of viral genomes when compared with wild-type RCNMV. However, these ASMs were still competent for virion formation. Three other ASMs (K25A, K33A and K38A) displayed milder symptoms and significant reductions in virion accumulation when compared with wild-type RCNMV, but retained the ability to spread systemically. Evidence from these last three ASMs, as well as a CP null mutant, showed that RCNMV is able to move systemically in N. benthamiana as a nonvirion form. These observations reaffirm the necessity of the N-terminal lysine-rich residues of the RCNMV CP for efficient virion accumulation. They also reveal additional roles for the CP in the modulation of host symptomatology, independent of its role in virion assembly and the rate of systemic viral movement in N. benthamiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号