首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum ‘Ziyeli’ (Prunus cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd.), which shows red color pigmentation in fruit (flesh and skin) and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5) show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin), and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear.  相似文献   

2.
Anthocyanin accumulations in the flowers can improve seed production of hybrid lines, and produce higher commodity value in cotton fibre. However, the genetic mechanism underlying the anthocyanin pigmentation in cotton petals is poorly understood. Here, we showed that the red petal phenotype was introgressed from Gossypium bickii through recombination with the segment containing the R3 bic region in the A07 chromosome of Gossypium hirsutum variety LR compared with the near-isogenic line of LW with white flower petals. The cyanidin-3-O-glucoside (Cy3G) was the major anthocyanin in red petals of cotton. A GhTT19 encoding a TT19-like GST was mapped to the R3bic site associated with red petals via map-based cloning, but GhTT19 homologue gene from the D genome was not expressed in G. hirsutum. Intriguingly, allelic variations in the promoters between GhTT19LW and GhTT19LR, rather than genic regions, were found as genetic causal of petal colour variations. GhTT19-GFP was found localized in both the endoplasmic reticulum and tonoplast for facilitating anthocyanin transport. An additional MYB binding element found only in the promoter of GhTT19LR, but not in that of GhTT19LW, enhanced its transactivation by the MYB activator GhPAP1. The transgenic analysis confirmed the function of GhTT19 in regulating the red flower phenotype in cotton. The essential light signalling component GhHY5 bonded to and activated the promoter of GhPAP1, and the GhHY5-GhPAP1 module together regulated GhTT19 expression to mediate the light-activation of petal anthocyanin pigmentation in cotton. This study provides new insights into the molecular mechanisms for anthocyanin accumulation and may lay a foundation for faster genetic improvement of cotton.  相似文献   

3.
4.
5.
6.
It has been suggested that gene duplication and polyploidization create opportunities for the evolution of novel characters. However, the connections between the effects of polyploidization and morphological novelties have rarely been examined. In this study, we investigated whether petal pigmentation patterning in an allotetraploid Clarkia gracilis has evolved as a result of polyploidization. Clarkia gracilis is thought to be derived through a recent polyploidization event with two diploid species, C. amoena huntiana and an extinct species that is closely related to C. lassenensis. We reconstructed phylogenetic relationships of the R2R3-MYBs (the regulators of petal pigmentation) from two subspecies of C. gracilis and the two purported progenitors, C. a. huntiana and C. lassenensis. The gene tree reveals that these R2R3-MYB genes have arisen through duplications that occurred before the divergence of the two progenitor species, that is, before polyploidization. After polyploidization and subsequent gene loss, only one of the two orthologous copies inherited from the progenitors was retained in the polyploid, turning it to diploid inheritance. We examined evolutionary changes in these R2R3-MYBs and in their expression, which reveals that the changes affecting patterning (including expression domain contraction, loss-of-function mutation, cis-regulatory mutation) occurred after polyploidization within the C. gracilis lineages. Our results thus suggest that polyploidization itself is not necessary in producing novel petal color patterns. By contrast, duplications of R2R3-MYB genes in the common ancestor of the two progenitors have apparently facilitated diversification of petal pigmentation patterns.  相似文献   

7.
8.
9.
In the present work, the pigmentation regulated by light was investigated in ray floret (rf) of Gerbera hybrida. When inflorescences from stage 1 were covered with aluminium foil in vivo the pigmentation of the rf petals was strongly blocked and the gene expression of CHS (Chalcone synthase) and DFR (Dihydroflavonol-4-reductase) was inhibited. Similar results were obtained when the detached rfs were cultured in vitro. Covering of the leaves on the plants resulted in reduced pigmentation compared with the covering of inflorescences in vivo. Removal of the green bracts did not affect the pigmentation significantly and the anthocyanin concentration was maintained at a level similar to that of the control. The ultrastructure of the plastids in rf petals was examined to investigate the possible role of photosynthesis in light regulation of flower pigmentation. Plastids within rf epidermal cells showed a characteristic chloroplast morphology in flowers at stage 2, which deteriorated by stage 3. They then changed to a chromoplast-like structure in fully opened rf petals (stage 6). Similar chromoplast-like structures were observed in the plastids of the rf petals from inflorescences both shaded in vivo and in vitro. Additionally, DCMU, a photosynthetic inhibitor, did not show a significant effect on light-induced anthocyanin accumulation. Our data suggest that light is an important factor for pigmentation of rf petal in Gerbera and the petal itself acts as a light sensor site to perceive the light signal. From the different light qualities evaluated, blue light promoted gene expression of CHS and DFR, and red light enhanced the gene expression of CHS, indicating the photoreceptors responding to blue and red light involved in the photoregulation of flower pigmentation in Gerbera.  相似文献   

10.
11.
12.
13.
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.  相似文献   

14.
15.
Flower opening is an important phenomenon in plant that indicates the readiness of the flower for pollination leading to petal expansion and pigmentation. This phenomenon has great impact on crop yield, which makes researches of its mechanism attractive for both plant physiology study and agriculture. Gene promoters directing the expression in petal during the petal cell wall modification and expansion when flower opens could be a convenient tool to analyze or monitor gene expression targeting this event. However, there are no reports of isolated gene promoters that can direct gene expression in petal or petal limb during the rapid cell wall dynamics when the flower opens. Xyloglucan endotransglucosylase/hydrolase 7 (XTH7), a cell wall modifying enzyme, was reported having up-regulated gene expression in the petal of Arabidopsis thaliana and Petunia hybrida. In this study, we fused a 1,904 bp length P. hybrida XTH7 promoter with a gene encoding a bright bioluminescent protein (Green enhanced Nano-lantern) to report gene expression and observed petal up-regulated bioluminescence activity by means of a consumer-grade camera. More importantly, this novel promoter demonstrated up-regulated activity in the petal limb of P. hybrida matured flower during flower opening. P. hybrida XTH7 promoter would be a useful tool for flowering study, especially for petal expansion research during flower opening.  相似文献   

16.
Background and Aims: Adaptation to different pollinators is thought to drive divergencein flower colour and morphology, and may lead to interspecificreproductive isolation. Floral diversity was tested for associationwith divergent pollinator preferences in a group of four closelyrelated wildflower species: the yellow-flowered Mimulus luteusvar. luteus and the red-pigmented M. l. variegatus, M. naiandinusand M. cupreus. Methods: Patterns of pollinator visitation were evaluated in naturalplant populations in central Chile, including both single-speciesand mixed-species sites. Floral anthocyanin pigments were identified,and floral morphology and nectar variation were quantified ina common garden experiment using seeds collected from the studysites. Key Results: Mimulus l. luteus, M. l. variegatus and M. naiandinus are morphologicallysimilar and share a single generalist bumblebee pollinator,Bombus dahlbomii. Mimulus cupreus differs significantly fromthe first three taxa in corolla shape as well as nectar characteristics,and had far fewer pollinator visits. Conclusions: This system shows limited potential for pollinator-mediatedrestriction of gene flow as a function of flower colour, andno evidence of transition to a novel pollinator. Mimulus cupreusmay experience reduced interspecific gene flow due to a lackof bumblebee visitation, but not because of its red pigmentation:rare yellow morphs are equally undervisited by pollinators.Overall, the results suggest that factors other than pollinatorshifts may contribute to the maintenance of floral diversityin these Chilean Mimulus species.  相似文献   

17.
18.
Regulation of anthocyanin biosynthesis in peach fruits   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号