首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction and persistence of novel, sexually antagonistic alleles can depend upon factors that differ between males and females. Understanding the conditions for invasion in a two‐locus model can elucidate these processes. For instance, selection can act differently upon the sexes, or sex linkage can facilitate the invasion of genetic variation with opposing fitness effects between the sexes. Two factors that deserve further attention are recombination rates and allele frequencies – both of which can vary substantially between the sexes. We find that sex‐specific recombination rates in a two‐locus diploid model can affect the invasion outcome of sexually antagonistic alleles and that the sex‐averaged recombination rate is not necessarily sufficient to predict invasion. We confirm that the range of permissible recombination rates is smaller in the sex benefitting from invasion and larger in the sex harmed by invasion. However, within the invasion space, male recombination rate can be greater than, equal to or less than female recombination rate in order for a male‐benefit, female‐detriment allele to invade (and similarly for a female‐benefit, male‐detriment allele). We further show that a novel, sexually antagonistic allele that is also associated with a lowered recombination rate can invade more easily when present in the double heterozygote genotype. Finally, we find that sexual dimorphism in resident allele frequencies can impact the invasion of new sexually antagonistic alleles at a second locus. Our results suggest that accounting for sex‐specific recombination rates and allele frequencies can determine the difference between invasion and non‐invasion of novel, sexually antagonistic alleles in a two‐locus model.  相似文献   

2.
One of the stronger empirical generalizations to emerge from the study of genetic systems is that achiasmate meiosis, which has evolved 25–30 times, is always restricted to the heterogametic sex in dioecious species, usually the male. Here we collate data on quantitative sex differences in chiasma frequency from 54 species (4 hermaphroditic flatworms, 18 dioecious insects and vertebrates and 32 hermaphroditic plants) to test whether similar trends hold. Though significant sex differences have been observed within many species, only the Liliaceae show a significant sexual dimorphism in chiasma frequency across species, with more crossing over in embryo mother cells than in pollen mother cells; chiasma frequencies are unrelated to sex and gamety in all other higher taxa studied. Further, the magnitude of sexual dimorphism, independent of sign, does not differ among the three main ecological groups (dioecious animals, plants, and hermaphroditic animals), contrary to what would be expected if it reflected sex-specific selection on recombination. These results indicate that the strong trends for achiasmate meiosis do not apply to quantitative sex differences in recombination, and contradict theories of sex-specific costs and benefits. An alternative hypothesis suggests that sex differences may be more-or-less neutral, selection determining only the mean rate of recombination. While male and female chiasma frequencies are more similar than would be expected under complete neutrality, a less absolute form of the hypothesis is more difficult to falsify. In female mice the sex bivalent has more chiasmata for its length than the autosomes, perhaps compensating for the absence of recombination in males. Finally, we observe that chiasma frequencies in males and females are positively correlated across species, validating the use of only one sex in comparative studies of recombination.  相似文献   

3.
Natural selection can influence the evolution of sexual dimorphism through selection for sex-specific ecomorphological adaptations. The role of natural selection in the evolution of sexual dimorphism, however, has received much less attention than that of sexual selection. We examined the relationship between habitat structure and both male and female morphology, and sexual dimorphism in size and shape, across 21 populations of dwarf chameleon (genus Bradypodion). Morphological variation in dwarf chameleons was strongly associated with quantitative, multivariate aspects of habitat structure and, in most cases, relationships were congruent between the sexes. However, we also found consistent relationships between habitat and sexual dimorphism. These resulted from both differences in magnitude of ecomorphological relationships that were otherwise congruent between the sexes, as well as in sex-specific ecomorphological adaptations. Our study provides evidence that natural selection plays an important role in the evolution of sexual dimorphism.  相似文献   

4.
ABSTRACT: BACKGROUND: Rates of recombination vary by three orders of magnitude in bacteria but the reasons for this variation is unclear. We performed a genome-wide study of recombination rate variation among genes in the intracellular bacterium Bartonella henselae, which has among the lowest estimated ratio of recombination relative to mutation in prokaryotes. RESULTS: The 1.9 Mb genomes of B. henselae strains IC11, UGA10 and Houston-1 genomes showed only minor gene content variation. Nucleotide sequence divergence levels were less than 1% and the relative rate of recombination to mutation was estimated to 1.1 for the genome overall. Four to eight segments per genome presented significantly enhanced divergences, the most pronounced of which were the virB and trw gene clusters for type IV secretion systems that play essential roles in the infection process. Consistently, multiple recombination events were identified inside these gene clusters. High recombination frequencies were also observed for a gene putatively involved in iron metabolism. A phylogenetic study of this gene in 80 strains of Bartonella quintana, B. henselae and B. grahamii indicated different population structures for each species and revealed horizontal gene transfers across Bartonella species with different host preferences. CONCLUSIONS: Our analysis has shown little novel gene acquisition in B. henselae, indicative of a closed pan-genome, but higher recombination frequencies within the population than previously estimated. We propose that the dramatically increased fixation rate for recombination events at gene clusters for type IV secretion systems is driven by selection for sequence variability.  相似文献   

5.
There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence.  相似文献   

6.
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3‐ and 3.2‐fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double‐strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11‐1 topoisomerase‐like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis‐specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.  相似文献   

7.
Ecological immunology attempts to explain variation in immune function. Much of this work makes predictions about how potential hosts should invest in overall immunity. However, this ‘overall’ perspective under-emphasizes other critical aspects, such as the specificity, inducibility and timing of an immune response. Here, we investigate these aspects by examining gene regulation across several immune system components in both male and female Drosophila melanogaster prior to and after mating. To elucidate potentially important temporal dynamics, we also assayed several genes over time. We found that males and females emphasized different components of their immune system, however overall investment was similar. Specifically, the sexes emphasized different gene paralogues within major gene families, and males tended to invest more in gram-negative defence. By contrast, the inducibility of the immune response was both transient (lasting approx. 24 hours) and equal between the sexes. Furthermore, mating tended to induce humoral gene upregulation, while cell-mediated genes were unaffected. Within the humoral system, gram-negative bacterial defence genes exhibited a greater inducibility than those associated with fungal or gram-positive bacterial defence. Our results suggest that variation in the effectiveness of the immune response between the sexes may be driven by differences in emphasis rather than overall investment.  相似文献   

8.
Meiotic recombination is not random in the proximal region of the mouse major histocompatibility complex (MHC). It is clustered at four restricted positions, so-called hotspots. Some of the MHC haplotypes derived from Asian wild mice enhance recombination at the hotspots in genetic crosses with standard MHC haplotypes of laboratory mouse strains. In particular, the wm7 haplotype derived from Japanese wild mouse indicated an approximately 2% recombination frequency within a 1.2 kb fragment of DNA in the interval between the Pb and Ob genes. Interestingly, this enhancement of recombination was observed only in female meiosis but not in male meiosis. Mating experiments demonstrated that the wm7 haplotype carries a genetic factor in the region proximal to the hotspot, which instigates recombination. In addition, the wm7 haplotype has a genetic factor located in the region distal to the hotspot, which suppresses recombination. From the molecular characterization of the two hotspots located in the Eb gene and the Pb-Ob interval, it appeared that there are several common molecular elements, the consensus of the middle repetitive MT-family, TCTG or CCTG tetramer repeats, and the solitary long terminal repeat (LTR) of mouse retrovirus.  相似文献   

9.
田素娟  袁茵 《生物学杂志》2012,29(4):102-104
减数分裂教学中重组值的教学,是高等医药院校遗传学中教学的关键点和难点。作者利用泊松分布的作图函数和蝗虫的精子形成过程装片制作、观察实验教学相结合的方法,不仅使学生掌握了减数分裂的基本知识,同时也使学生掌握了减数分裂最大重组值不超过50%的教学难点。  相似文献   

10.
减数分裂重组不仅保证了真核生物有性生殖过程中染色体数量的稳定,还通过父母亲本间遗传物质的互换在后代中产生遗传变异。因此,减数分裂重组是遗传多样性形成的重要途径,也是生物多样性和物种进化的主要动力。在绝大多数真核生物中,不管染色体数目的多少或基因组的大小,减数分裂重组的形成都受到严格的调控,但抑制减数分裂重组的分子机理目前仍不清楚。近年来,通过正向遗传学筛选鉴定出多个减数分裂重组抑制基因,揭示了抑制基因的功能和调控途径。本文基于拟南芥中减数分裂重组抑制基因的研究现状,综述了植物减数分裂重组抑制基因研究取得的突破性进展,并结合基因功能与其调控网络阐述了抑制植物减数分裂重组的分子机理。  相似文献   

11.
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana.  相似文献   

12.
13.
14.
Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associa...  相似文献   

15.
During meiosis, paternal and maternal homologous chromosomes recombine at specific recombination sites named hotspots. What renders 2% of the mammalian genomes permissive to meiotic recombination by allowing Spo11 endonuclease to initiate double‐strand breaks is largely unknown. Work in yeast has shown that chromatin accessibility seems to be important for this activity. Here, we define nucleosome profiles and dynamics at four mouse recombination hotspots by purifying highly enriched fractions of meiotic cells. We found that nucleosome occupancy is generally stable during meiosis progression. Interestingly, the cores of recombination hotspots have largely open chromatin structure, and the localization of the few nucleosomes present in these cores correlates precisely with the crossover‐free zones in recombinogenic domains. Collectively, these high‐resolution studies suggest that nucleosome occupancy seems to direct, at least in part, how meiotic recombination events are processed.  相似文献   

16.
Meiotic recombination is a fundamental biological process that plays a central role in the evolution and breeding of plants. We have developed a new seed-based assay for meiotic recombination in Arabidopsis. The assay is based on the transformation of green and red fluorescent markers expressed under a seed-specific promoter. A total of 74 T-DNA markers were isolated, sequenced and mapped both physically and genetically. Lines containing red and green markers that map 1-20 cM apart were crossed to produce tester lines with the two markers linked in cis yielding seeds that fluoresced both in red and green. We show that these lines can be used for efficient scoring of recombinant types (red only or green only fluorescing seeds) in a seed population derived from a test cross (backcross) or self-pollination. Two tester lines that were characterized during several generations of backcross and self-pollination, one in the background of ecotype Landsberg and one in the ecotype Columbia, are described. We discuss the number of plants and seeds to be scored in order to obtain reliable and reproducible crossing over rate values. This assay offers a relatively high-throughput method, with the benefit of seed markers (similar to the maize classical genetic markers) combined with the advantages of Arabidopsis. It advances the prospect to better understand the factors that affect the rate of meiotic crossover in plants and to stimulate this process for more efficient breeding and mapping.  相似文献   

17.
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.  相似文献   

18.
The correlation between genetic variation and recombination rate was investigated in a structured mouse population. Nucleotide sequence data from 19 autosomal DNA loci from eight inbred strains of mouse (Mus musculus) sampled from three major subspecies were analyzed. The recombination rate was estimated from the comparison of genetic and physical map distances between markers flanking a 10-cM region of each locus. The strains were categorized into four groups (subpopulations) based on geography. By partitioning the genetic diversity into within-group and among-group variation, we detected a positive correlation between the recombination rate and nucleotide diversity within groups. The level of nucleotide differentiation among groups (G(ST)) showed a negative correlation with the rate of recombination. There was no significant correlation between recombination rate and nucleotide diversity when data from different subpopulations were pooled. No correlation was detected between recombination rate and nucleotide divergence of M. musculus and M. spicilegus. These patterns deviate from the strict neutral expectation under the constant nucleotide substitution rate, and they are likely to have been formed either by a hitchhiking effect of positively selected mutants or by background selection of deleterious mutants occurring in a subdivided population. Our series of comparisons show that because a real population always has some structure, incorporation of its information is important in detecting non-neutral evolution.  相似文献   

19.
20.
The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome‐wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double‐strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild‐type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB‐prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号