首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the generation of West Nile virus (WNV) infectious clones for the pathogenic lineage 1 Texas-HC2002 and nonpathogenic lineage 2 Madagascar-AnMg798 strains. The infectious clones exhibited biological properties similar to those of the parental virus isolates. We generated chimeric viruses and found that viral factors within the structural and nonstructural regions of WNV-TX contribute to the control of type I interferon defenses. These infectious clones provide new reagents to study flavivirus immune regulation and pathogenesis.  相似文献   

2.
The introduction of West Nile virus (WNV) into North America has been associated with relatively high rates of neurological disease and death in humans, birds, horses, and some other animals. Previous studies identified strains in both genetic lineage 1 and genetic lineage 2, including North American isolates of lineage 1, that were highly virulent in a mouse neuroinvasion model, while other strains were avirulent or significantly attenuated (D. W. C. Beasley, L. Li, M. T. Suderman, and A. D. T. Barrett, Virology 296:17-23, 2002). To begin to elucidate the basis for these differences, we compared a highly virulent New York 1999 (NY99) isolate with a related Old World lineage 1 strain, An4766 (ETH76a), which is attenuated for mouse neuroinvasion. Genomic sequencing of ETH76a revealed a relatively small number of nucleotide (5.1%) and amino acid (0.6%) differences compared with NY99. These differences were located throughout the genome and included five amino acid differences in the envelope protein gene. Substitution of premembrane and envelope genes of ETH76a into a NY99 infectious clone backbone yielded a virus with altered in vitro growth characteristics and a mouse virulence phenotype comparable to ETH76a. Further site-specific mutagenesis studies revealed that the altered phenotype was primarily mediated via loss of envelope protein glycosylation and that this was associated with altered stability of the virion at mildly acidic pH. Therefore, the enhanced virulence of North American WNV strains compared with other Old World lineage 1 strains is at least partly mediated by envelope protein glycosylation.  相似文献   

3.
4.
Climatic and landscape patterns have been associated with both relative mosquito abundance and transmission of mosquito-borne illnesses in many parts of the world, especially warm and tropical climes. To determine if temperature, precipitation, or degree of urbanization were similarly important in the number of potential mosquito vectors for West Nile virus in the moderately temperate climate of western Washington, mosquitoes were collected using CDC carbon-dioxide/light traps set throughout the Seattle region during the summers of 2003 and 2004. The type and abundance of recovered species were compared to ecological correlates. Temperature and mosquito abundance were positively correlated, while precipitation was not strongly correlated with numbers of mosquitoes. Potential WNV mosquito vectors were most abundant in urban and suburban sites, including sites near communal roosts of American crows (Corvus brachyrhynchos). Exurban sites had the greatest vector species diversity, and Culex pipiens was the most abundant species throughout the region.  相似文献   

5.
6.
7.
West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5) TCID(50) Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.  相似文献   

8.
We attempted to isolate West Nile virus from mosquitoes collected in the field for the first time in Turkey. A total of 6,457 mosquito specimens from Culex pipiens Linnaeus, Ochlerotatus caspius (Pallas) and Aedes spp. species were included in this study. Culex pipiens samples made up 56% of the total species, O. caspius 24% and Aedes spp 20%. There were no positive results after studying mosquito samples using Real-time PCR, VecTest, and Vero cell culture. In serological tests of 181 human serum samples, 29 (16%) were found to be West Nile positive. On the basis of these results, we intend to collect more mosquito samples especially from those areas from which positive serum samples were obtained.  相似文献   

9.
West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.  相似文献   

10.
11.
The envelope glycoprotein (E) of West Nile virus (WNV) undergoes a conformational rearrangement triggered by low pH that results in a class II fusion event required for viral entry. Herein we present the 3.0-A crystal structure of the ectodomain of WNV E, which reveals insights into the flavivirus life cycle. We found that WNV E adopts a three-domain architecture that is shared by the E proteins from dengue and tick-borne encephalitis viruses and forms a rod-shaped configuration similar to that observed in immature flavivirus particles. Interestingly, the single N-linked glycosylation site on WNV E is displaced by a novel alpha-helix, which could potentially alter lectin-mediated attachment. The localization of histidines within the hinge regions of E implicates these residues in pH-induced conformational transitions. Most strikingly, the WNV E ectodomain crystallized as a monomer, in contrast to other flavivirus E proteins, which have crystallized as antiparallel dimers. WNV E assembles in a crystalline lattice of perpendicular molecules, with the fusion loop of one E protein buried in a hydrophobic pocket at the DI-DIII interface of another. Dimeric E proteins pack their fusion loops into analogous pockets at the dimer interface. We speculate that E proteins could pivot around the fusion loop-pocket junction, allowing virion conformational transitions while minimizing fusion loop exposure.  相似文献   

12.
In nature, arthropod-borne viruses (arboviruses) perpetuate through alternating replication in vertebrate and invertebrate hosts. The trade-off hypothesis proposes that these viruses maintain adequate replicative fitness in two disparate hosts in exchange for superior fitness in one host. Releasing the virus from the constraints of a two-host cycle should thus facilitate adaptation to a single host. This theory has been addressed in a variety of systems, but remains poorly understood. We sought to determine the fitness implications of alternating host replication for West Nile virus (WNV) using an in vivo model system. Previously, WNV was serially or alternately passed 20 times in vivo in chicks or mosquitoes and resulting viruses were characterized genetically. In this study, these test viruses were competed in vivo in fitness assays against an unpassed marked reference virus. Fitness was assayed in chicks and in two important WNV vectors, Culex pipiens and Culex quinquefasciatus. Chick-specialized virus displayed clear fitness gains in chicks and in Cx. pipiens but not in Cx. quinquefasciatus. Cx. pipiens-specialized virus experienced reduced fitness in chicks and little change in either mosquito species. These data suggest that when fitness is measured in birds the trade-off hypothesis is supported; but in mosquitoes it is not. Overall, these results suggest that WNV evolution is driven by alternate cycles of genetic expansion in mosquitoes, where purifying selection is weak and genetic diversity generated, and restriction in birds, where purifying selection is strong.  相似文献   

13.
gammadelta T cells respond rapidly following West Nile virus (WNV) infection, limiting viremia and invasion of the central nervous system and thereby protecting the host from lethal encephalitis. Here, we investigated the role of two major subpopulations of peripheral gammadelta T cells, Vgamma1(+) and Vgamma4(+) cells, in host immunity against WNV infection. We found initially that aged mice were more susceptible to WNV infection than young mice. Following WNV challenge, Vgamma1(+) cells in young mice expanded significantly whereas Vgamma4(+) cells expanded modestly. In contrast, aged mice exhibited a slower and reduced response of Vgamma1(+) cells but maintained a higher content of Vgamma4(+) cells. Vgamma1(+) cells were the major gammadelta subset producing IFN-gamma during WNV infection. Mice depleted of Vgamma1(+) cells had an enhanced viremia and higher mortality to WNV encephalitis. Vgamma4(+) cells had a higher potential for producing tumor necrosis factor-alpha (TNF-alpha), a cytokine known to be involved in blood-brain barrier compromise and WNV entry into the brain. Depletion of Vgamma4(+) cells reduced TNF-alpha level in the periphery, accompanied by a decreased viral load in the brain and a lower mortality to WN encephalitis. These results suggest that Vgamma1(+) and Vgamma4(+) cells play distinct roles in protection and pathogenesis during WNV infection.  相似文献   

14.
The emerging disease West Nile fever is caused by West Nile virus (WNV), one of the most widespread arboviruses. This study represents the first test of the vectorial competence of European Culex pipiens Linnaeus 1758 and Stegomyia albopicta (= Aedes albopictus) (both: Diptera: Culicidae) populations for lineage 1 and 2 WNV isolated in Europe. Culex pipiens and S. albopicta populations were susceptible to WNV infection, had disseminated infection, and were capable of transmitting both WNV lineages. This is the first WNV competence assay to maintain mosquito specimens under environmental conditions mimicking the field (day/night) conditions associated with the period of maximum expected WNV activity. The importance of environmental conditions is discussed and the issue of how previous experiments conducted in fixed high temperatures may have overestimated WNV vector competence results with respect to natural environmental conditions is analysed. The information presented should be useful to policymakers and public health authorities for establishing effective WNV surveillance and vector control programmes. This would improve preparedness to prevent future outbreaks.  相似文献   

15.
16.
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.  相似文献   

17.
西尼罗病毒的RT-PCR检测与鉴定   总被引:4,自引:0,他引:4  
建立西尼罗病毒敏感、特异、快速的RT-PCR检测方法用于实验室诊断和流行病学监测。采用一步RT-PCR和套式PCR法对西尼罗病毒感染的乳鼠脑和细胞培养上清进行扩增,并对扩增产物进行序列测定。两种方法均可分别从两种组织中扩增出与预期大小相一致的片段,套式PCR法比一步RT-PCR法更为敏感,该扩增片段与西尼罗病毒埃及Eg101株相应序列的同源性为99%。  相似文献   

18.
Raptor mortality due to West Nile virus in the United States, 2002   总被引:1,自引:0,他引:1  
West Nile virus (WNV) has affected many thousands of birds since it was first detected in North America in 1999, but the overall impact on wild bird populations is unknown. In mid-August 2002, wildlife rehabilitators and local wildlife officials from multiple states began reporting increasing numbers of sick and dying raptors, mostly red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus). Commonly reported clinical signs were nonspecific and included emaciation, lethargy, weakness, inability to perch, fly or stand, and nonresponse to danger. Raptor carcasses from 12 states were received, and diagnostic evaluation of 56 raptors implicated WNV infection in 40 (71%) of these cases. Histologically, nonsuppurative encephalitis and myocarditis were the salient lesions (79% and 61%, respectively). Other causes of death included lead poisoning, trauma, aspergillosis, and Salmonella spp. and Clostridium spp. infections. The reason(s) for the reported increase in raptor mortality due to WNV in 2002 compared with the previous WNV seasons is unclear, and a better understanding of the epizootiology and pathogenesis of the virus in raptor populations is needed.  相似文献   

19.
20.
Following an outbreak of Rift Valley fever (RVF) in south-eastern Mauritania during 1998, entomological investigations were conducted for 2 years in the affected parts of Senegal and Mauritania, spanning the Sénégal River basin. A total of 92 787 mosquitoes (Diptera: Culicidae), belonging to 10 genera and 41 species, were captured in light traps. In Senegal, Culex poicilipes (41%) and Mansonia uniformis (39%) were the most abundant species caught, whereas Aedes vexans (77%) and Cx. poicilipes (15%) predominated in Mauritania. RVF virus was isolated from 63 pools of Cx. poicilipes: 36 from Senegal in 1998 and 27 from Mauritania in 1999. These results are the first field evidence of Cx. poicilipes naturally infected with RVFV, and the first isolations of this virus from mosquitoes in Mauritania - the main West African epidemic and epizootic area. Additional arbovirus isolates comprised 25 strains of Bagaza (BAG) from Aedes fowleri, Culex neavei and Cx. poicilipes; 67 Sanar (ArD 66707) from Cx. poicilipes; 51 Wesselsbron (WSL) from Ae. vexans and 30 strains of West Nile (WN) from Ma. uniformis, showing differential specific virus-vector associations in the circulation activity of these five arboviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号