首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pioneer longitudinal axons grow long distances parallel to the floor plate and precisely maintain their positions using guidance molecules released from the floor plate. Two receptors, Robo1 and Robo2, are critical for longitudinal axon guidance by the Slit family of chemorepellents. Previous studies showed that Robo1−/−;2−/− double mutant mouse embryos have disruptions in both ventral and dorsal longitudinal tracts. However, the role of each Robo isoform remained unclear, because Robo1 or 2 single mutants have mild or no errors. Here we utilized a more sensitive genetic strategy to reduce Robo levels for determining any separate functions of the Robo1 and 2 isoforms. We found that Robo1 is the predominant receptor for guiding axons in ventral tracts and prevents midline crossing. In contrast, Robo2 is the main receptor for directing axons within dorsal tracts. Robo2 also has a distinct function in repelling neuron cell bodies from the floor plate. Therefore, while Robo1 and 2 have some genetic overlap to cooperate in guiding longitudinal axons, each isoform has distinct functions in specific longitudinal axon populations.  相似文献   

2.
3.
4.
Growth cone guidance is driven by attractive and repulsive signaling cues. Until recently, repulsive signaling by semaphorins was thought to be mediated through Plexin receptors, whereas Slits-induced repulsion was solely mediated through Robo receptors. In a recent report published in Nature Neuroscience, Celine Delloye-Bourgeois and colleagues (2015) combined phenotypic analyses of transgenic mouse lines and in vitro biochemical experiments to identify PlexinA1 as a novel receptor for Slits. Strikingly, they uncovered for the very first time that the Slit2C-terminal fragment possesses some unique biological activity as binding partner for PlexinA1. Even more excitingly, the signaling cascade triggered by SlitC binding to PlexinA1 mediates growth cone collapse of commissural axons both in vivo and ex vivo and nicely complements Robo-Slit signaling in the developing spinal cord midline to prevent midline recrossing.  相似文献   

5.
Growth cone guidance is driven by attractive and repulsive signaling cues. Until recently, repulsive signaling by semaphorins was thought to be mediated through Plexin receptors, whereas Slits-induced repulsion was solely mediated through Robo receptors. In a recent report published in Nature Neuroscience, Celine Delloye-Bourgeois and colleagues (2015) combined phenotypic analyses of transgenic mouse lines and in vitro biochemical experiments to identify PlexinA1 as a novel receptor for Slits. Strikingly, they uncovered for the very first time that the Slit2C-terminal fragment possesses some unique biological activity as binding partner for PlexinA1. Even more excitingly, the signaling cascade triggered by SlitC binding to PlexinA1 mediates growth cone collapse of commissural axons both in vivo and ex vivo and nicely complements Robo-Slit signaling in the developing spinal cord midline to prevent midline recrossing.  相似文献   

6.
Mutations that affect the single C. elegans Eph receptor tyrosine kinase VAB-1 cause defects in cell movements during embryogenesis. Here, we provide genetic and molecular evidence that the VAB-1 Eph receptor functions with another neuronal receptor, SAX-3/Robo, for proper embryogenesis. Our analysis of sax-3 mutants shows that SAX-3/Robo functions with the VAB-1 Eph receptor for gastrulation cleft closure and ventral epidermal enclosure. In addition, SAX-3 functions autonomously for epidermal morphogenesis independently of VAB-1. A double-mutant combination between vab-1 and slt-1 unmasks a role for the SLT-1 ligand in embryogenesis. We provide evidence for a physical interaction between the VAB-1 tyrosine kinase domain and the juxtamembrane and CC1 region of the SAX-3/Robo receptor. Gene dosage, non-allelic non-complementation experiments and co-localization of the two receptors are consistent with a model in which these two receptors form a complex and function together during embryogenesis.  相似文献   

7.
With the characterization of the Smads 5 years ago, it became possible to trace the TGFβ signal transduction pathway from the plasma membrane to the nucleus. Since that time, many Smad interaction partners, cofactors and target genes have been identified using a variety of experimental approaches and model systems. Understanding how these partners generate tissue specificity and crosstalk between pathways is an ongoing pursuit for the field of TGFβ signal transduction. The nematode Caenorhabditis elegans provides a simple, genetically tractable model organism in which to address this goal. This review will examine progress towards the identification of cellular and molecular targets of TGFβ-related signaling in C. elegans.  相似文献   

8.
Robo receptors interact with ligands of the Slit family. The nematode C. elegans has one Robo receptor (SAX-3) and one Slit protein (SLT-1), which direct ventral axon guidance and guidance at the midline. In larvae, slt-1 expression in dorsal muscles repels axons to promote ventral guidance. SLT-1 acts through the SAX-3 receptor, in parallel with the ventral attractant UNC-6 (Netrin). Removing both UNC-6 and SLT-1 eliminates all ventral guidance information for some axons, revealing an underlying longitudinal guidance pathway. In the embryo, slt-1 is expressed at high levels in anterior epidermis. Embryonic expression of SLT-1 provides anterior-posterior guidance information to migrating CAN neurons. Surprisingly, slt-1 mutants do not exhibit the nerve ring and epithelial defects of sax-3 mutants, suggesting that SAX-3 has both Slit-dependent and Slit-independent functions in development.  相似文献   

9.
Transformer基因与果蝇和线虫的性别决定   总被引:1,自引:0,他引:1  
刘辉  陈思礼  王国秀 《遗传》2005,27(1):150-154
黑腹果蝇(Drosophila melanogaster)和秀丽隐杆线虫(Caeborhabditis elegans)的性别决定的问题已研究得比较详细,且transformer基因是这两种生物性别决定中最重要的基因之一,其有关的性别决定研究在近几年取得了很大的进展。本文就线虫和果蝇的transformer基因及其相关基因的特性与功能进行了特别介绍,并在此基础上对其性别决定的分子机制进行初步的比较和分析。Abstract : Sex determination of Drosophila melanogaster and Caeborhabditis elegans has been known in detail. Great progress, is achieved in recent years, is the research of transformer genes, which are those of most important genes in sex determination in both species. In this paper, molecular character, genetic function and the relative genes of transformer genes are particularly described. On the basis,a primary compariso and analysis between the molecular mechanism of sex determination in C.elegans and D. melanogaster are presented.  相似文献   

10.
11.
The temperature-sensitive mutant l(3)c43hs1 is lethal at the restrictive temperature late in the last larval instar and has wing disks that show excessive growth when larvae are reared at 25°C. Such mutant disks give rise to defective wings showing duplications and deficiencies. Abnormal folding patterns are localized to the region between the wing pouch and the area where adepithelial cells are found; the disks retain an epithelial morphology. Apoptotic cell death is distributed throughout the wing disks without any obvious concentration of dead cells in a specific area. Cell death is seen as early as 12 hr after a shift to the restrictive temperature. Temperature shift experiments also show that cell death precedes the onset of overgrowth, but since the spatial distribution of death is not localized to the regions of abnormal folds, it is unlikely that cell death and overgrowth are causally related.  相似文献   

12.
目的:利用秀丽线虫研发合适的低氧损伤模型,以更好地揭示低氧生理和低氧病理的分子机制.方法:通过对秀丽线虫进行不同时间的低氧处理,系统观察线虫的死亡率、运动功能、细胞形态及相关蛋白表达水平的变化,分析低氧对线虫的损伤情况.结果:氧浓度为0.2%的物理性低氧可引起秀丽线虫多种细胞形态发生变化,进而导致线虫死亡,且死亡率随低...  相似文献   

13.
细菌介导的RNA干扰对C.elegans中par-3基因的作用   总被引:1,自引:0,他引:1  
设计并构建了针对par-3基因的发夹RNA载体,将构建好的质粒转入大肠杆菌HT115,25℃喂食Caenorhabditis elegans(C.elegans)野生型虫体,24h后观察par-3(RNA干扰)celegans的胚胎发育情况。结果显示通过喂食形成发夹结构dsRNA的细菌可以对celegans中par-3基因进行RNA干扰,干扰率可以达到60%以上。干扰后的早期胚胎发育丧失第一次卵裂的不对称性,第二次卵裂的纺锤体方向发生改变,与par-3突变体的观察结果一致,为进一步在mex-3转基因虫体中通过RNA干扰研究基因表达打下了基础。  相似文献   

14.
宋少娟  郭亚平  张学尧  张建珍  马恩波 《遗传》2014,36(12):1261-1268
铜在有机体代谢过程中发挥着重要作用, 但过量可产生毒害效应。文章以秀丽隐杆线虫(Caenorhabditis elegans)为模式生物, 寻找多细胞生物中铜代谢调节的关键基因。采用甲基磺酸乙酯(EMS)诱变秀丽隐杆线虫, 通过100 000个杂合基因组的筛选得到两个抗铜突变体ms1和ms2。在筛选培养基上野生型停止发育, 而抗铜突变体则可发育到成虫, 且抗铜性状能稳定遗传。与N2的回交实验表明, ms1的抗铜表型可能由单基因隐性突变导致, ms2的抗铜表型消失, 可能是由多基因突变引起。以CB4856和ms1作为亲本, 构建了F2群, 经SNP定位, 确定ms1突变位点位于染色体II(LGII)上, 进一步对LGII染色体上的8个SNP标记进行分析, 将ms1的突变位点定位在LGII:-6附近。秀丽隐杆线虫抗铜突变体ms1的筛选和定位可为深入研究线虫铜代谢及调控的分子机制提供实验依据。  相似文献   

15.
Recent genome sequencing papers have given genome sizes of 180 Mb for Drosophila melanogaster Iso-1 and 125 Mb for Arabidopsis thaliana Columbia. The former agrees with early cytochemical estimates, but numerous cytometric estimates of around 170 Mb imply that a genome size of 125 Mb for arabidopsis is an underestimate. In this study, nuclei of species pairs were compared directly using flow cytometry. Co-run Columbia and Iso-1 female gave a 2C peak for arabidopsis only approx. 15 % below that for drosophila, and 16C endopolyploid Columbia nuclei had approx. 15 % more DNA than 2C chicken nuclei (with >2280 Mb). Caenorhabditis elegans Bristol N2 (genome size approx. 100 Mb) co-run with Columbia or Iso-1 gave a 2C peak for drosophila approx. 75 % above that for 2C C. elegans, and a 2C peak for arabidopsis approx. 57 % above that for C. elegans. This confirms that 1C in drosophila is approx. 175 Mb and, combined with other evidence, leads us to conclude that the genome size of arabidopsis is not approx. 125 Mb, but probably approx. 157 Mb. It is likely that the discrepancy represents extra repeated sequences in unsequenced gaps in heterochromatic regions. Complete sequencing of the arabidopsis genome until no gaps remain at telomeres, nucleolar organizing regions or centromeres is still needed to provide the first precise angiosperm C-value as a benchmark calibration standard for plant genomes, and to ensure that no genes have been missed in arabidopsis, especially in centromeric regions, which are clearly larger than once imagined.  相似文献   

16.
The orphan receptor ROS1 is a human proto‐oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL‐3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL‐3, the mucin SRAP‐1, and BCC‐1, the homolog of mRNA regulating protein Bicaudal‐C. This study answers a longstanding question as to the developmental function of ROL‐3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle‐shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN‐1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn‐1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC‐6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN‐1 in unc‐6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN‐1 does not mediate follower/pioneer adhesion. Instead, DGN‐1 appears to block premature responsiveness of follower axons to a preanal ganglion‐directed guidance cue, which mediates ventral‐to‐anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N‐terminal DGN‐1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

18.
昆虫GABA受体(γ-aminobutyric acid receptor, GABAR)是杀虫剂的重要靶标之一。本研究以黑腹果蝇Drosophila melanogaster整体组织的cDNA作为模板, 采用RT-PCR技术扩增了黑腹果蝇GABA受体LCCH3亚基和GRD亚基的cDNA序列, 并克隆至pET-32a表达载体上, 测序结果表明获得的序列与基因库中已发表的序列一致性在99%以上, 无移码突变。在IPTG的诱导下, LCCH3基因成功在大肠杆菌Escherichia coli中表达, 而GRD基因未表达。通过包涵体洗涤、变性、Ni2+亲合层析纯化、稀释复性获得纯化的重组表达的LCCH3蛋白, 并用圆二色谱测定了目标蛋白的二级结构, 主要富含β结构。该研究结果为研究昆虫GABAR的结构和功能关系提供了重要的参考数据。  相似文献   

19.
Serotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named SER-1 (also known as 5HT2ce) was responsible for the effect of 5HT on egg-laying. Here we confirm this observation and show that SER-1 also plays an important role in locomotion. A mutant lacking SER-1 was found to be highly resistant to exogenous 5HT in the absence of food and this resistant phenotype was rescued by reintroducing the SER-1 gene in a mutant background. Pharmacological studies showed that the same antagonists that blocked the activity of recombinant SER-1 in vitro also inhibited the effect of 5HT on motility, suggesting the same receptor was responsible for both effects. When tested for locomotory behaviors, the SER-1 mutant was found to be moderately defective in food-induced slowing. In addition, the mutant changed direction more frequently than the wildtype when searching for food, suggesting that SER-1 may play a role in navigational control during foraging. Both these effects required the presence of MOD-1, a 5HT gated chloride channel, and the results indicate that SER-1 and MOD-1 modulate these behaviors through a common pathway. On the basis of expression analysis of a ser-1::GFP translational fusion, SER-1 is prominently located in central, integrating neurons of the head ganglia (RIA and RIC) but not the body wall musculature. The evidence suggests that SER-1 controls locomotion through indirect modulation of neuromuscular circuits and has effects both on speed and direction of movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号