首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the driving forces and molecular processes underlying dioecy and sex chromosome evolution, leading from hermaphroditism to the occurrence of male and female individuals, is of considerable interest in fundamental and applied research. The genus Phoenix, belonging to the Arecaceae family, consists uniquely of dioecious species. Phylogenetic data suggest that the genus Phoenix has diverged from a hermaphroditic ancestor which is also shared with its closest relatives. We have investigated the cessation of recombination in the sex‐determination region within the genus Phoenix as a whole by extending the analysis of Pdactylifera SSR sex‐related loci to eight other species within the genus. Phylogenetic analysis of a date palm sex‐linked PdMYB1 gene in these species has revealed that sex‐linked alleles have not clustered in a species‐dependent way but rather in X and Y‐allele clusters. Our data show that sex chromosomes evolved from a common autosomal origin before the diversification of the extant dioecious species.  相似文献   

2.
Extensive interspecific genetic introgression is often reported, and appraising its genomic impact can serve to determine whether it results from selection on specific loci or from demographic processes affecting the whole genome. The three species of hares present in the Iberian Peninsula harbour high frequencies of mitochondrial DNA (mtDNA) from Lepus timidus, an arctic/boreal species now extinct in the region. This could result from the invasive replacement of L. timidus by the temperate species during deglaciation but should then have left traces in the nuclear genome. We typed single nucleotide polymorphisms (SNPs) discovered by sequencing 10 autosomal loci, two X-linked and one Y-linked in species-wide samples of the four taxa. Based on lineage-diagnostic SNPs, we detected no trace of L. timidus sex chromosomes in Iberia. From the frequencies of inferred haplotypes, autosomal introgression into L. granatensis appeared mostly sporadic but always widespread instead of restricted to the north as mtDNA. Autosomal introgression into Iberian L. europaeus , inhabiting the Pyrenean foothills, was hardly detectable, despite quasi-fixation of L. timidus mtDNA. L. castroviejoi , endemic to the Cantabrian Mountains and fixed for L. timidus mtDNA, showed little traces of autosomal introgression. The absence of sex-chromosome introgression presumably resulted from X-linked hybrid male unfitness. The contrasting patterns between the autosomes and mtDNA could reflect general gender asymmetric processes such as frequency-dependent female assortative mating, lower mtDNA migration and higher male dispersal, but adaptive mtDNA introgression cannot be dismissed. Additionally, we document reciprocal introgression between L. europaeus and both L. granatensis in Iberia and L. timidus outside Iberia.  相似文献   

3.
Studies of sexual selection in speciation have traditionally focused on mate preference, with less attention given to traits that act between copulation and fertilization. However, recent work suggests that post-mating prezygotic barriers may play an important role in speciation. Here, we evaluate the role of such barriers in the field crickets, Gryllus firmus and Gryllus pennsylvanicus. Gryllus pennsylvanicus females mated with G. firmus males produce viable, fertile offspring, but when housed with both species produce offspring sired primarily by conspecifics. We evaluate patterns of sperm utilization in doubly mated G. pennsylvanicus females and find no evidence for conspecific sperm precedence. The reciprocal cross (G. firmus female × G. pennsylvanicus male) produces no progeny. Absence of progeny reflects a barrier to fertilization rather than reduced sperm transfer, storage or motility. We propose a classification scheme for mechanisms underlying post-mating prezygotic barriers similar to that used for premating barriers.  相似文献   

4.
Genetic incompatibilities are an important component of reproductive isolation. Although theoretical studies have addressed their evolution, little is known about their maintenance when challenged by potentially high migration rates in secondary contact. Although theory predicts that recombination can erode barriers, many empirical systems have been found to retain species‐specific differences despite substantial gene flow. By simulating whole genomes in individuals of hybridizing species, we find that the genetic architecture of two contrasting models of epistatic hybrid incompatibilities and the context of hybridization can substantially affect species integrity and genomic heterogeneity. In line with theory, our results show that intergenomic incompatibilities break down rapidly by recombination, but can maintain genome‐wide differentiation under very limited conditions. By contrast, intragenomic interactions that arise from genetic pathways can maintain species‐specific differences even with high migration rates and gene flow, whereas introgression at large parts of the genome can simultaneously remain extensive, consistent with empirical observations. We discuss the importance of intragenomic interactions in speciation and consider how this form of epistatic fitness variation is implicated and supported by other theoretical and empirical studies. We further address the relevance of replicates and knowledge of context when investigating the genomics of speciation.  相似文献   

5.
Chromosome fusion and fission are primary mechanisms of karyotype evolution. In particular, the fusion of a sex chromosome and an autosome has been proposed as a mechanism to resolve intralocus sexual antagonism. If sexual antagonism is common throughout the genome, we should expect to see an excess of fusions that join sex chromosomes and autosomes. Here, we present a null model that provides the probability of a sex chromosome autosome fusion, assuming all chromosomes have an equal probability of being involved in a fusion. This closed-form expression is applicable to both male and female heterogametic sex chromosome systems and can accommodate unequal proportions of fusions originating in males and females. We find that over 25% of all chromosomal fusions are expected to join a sex chromosome and an autosome whenever the diploid autosome count is fewer than 16, regardless of the sex chromosome system. We also demonstrate the utility of our model by analysing two contrasting empirical datasets: one from Drosophila and one from the jumping spider genus Habronattus. We find that in the case of Habronattus, there is a significant excess of sex chromosome autosome fusions but that in Drosophila there are far fewer sex chromosome autosome fusions than would be expected under our null model.  相似文献   

6.
Three-spined sticklebacks (Gasterosteus aculeatus) are a powerful evolutionary model system due to the rapid and repeated phenotypic divergence of freshwater forms from a marine ancestor throughout the Northern Hemisphere. Many of these recently derived populations are found in overlapping habitats, yet are reproductively isolated from each other. This scenario provides excellent opportunities to investigate the mechanisms driving speciation in natural populations. Genetically distinguishing between such recently derived species, however, can create difficulties in exploring the ecological and genetic factors defining species boundaries, an essential component to our understanding of speciation. We overcame these limitations and increased the power of analyses by selecting highly discriminatory markers from the battery of genetic markers now available. Using species diagnostic molecular profiles, we quantified levels of hybridization and introgression within three sympatric species pairs of three-spined stickleback. Sticklebacks within Priest and Paxton lakes exhibit a low level of natural hybridization and provide support for the role of reinforcement in maintaining distinct species in sympatry. In contrast, our study provides further evidence for a continued breakdown of the Enos Lake species pair into a hybrid swarm, with biased introgression of the 'limnetic' species into that of the 'benthic'; a situation that highlights the delicate balance between persistence and breakdown of reproductive barriers between young species. A similar strategy utilizing the stickleback microsatellite resource can also be applied to answer an array of biological questions in other species' pair systems in this geographically widespread and phenotypically diverse model organism.  相似文献   

7.
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non‐model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.  相似文献   

8.
Minder AM  Widmer A 《Molecular ecology》2008,17(6):1552-1563
Little is known about the nature of species boundaries between closely related plant species and about the extent of introgression as a consequence of hybridization upon secondary contact. To address these topics we analyzed genome-wide differentiation between two closely related Silene species, Silene latifolia and S. dioica , and assessed the strength of introgression in sympatry. More than 300 AFLP markers were genotyped in three allopatric and three sympatric populations of each species. Outlier analyses were performed separately for sympatric and allopatric populations. Both positive and negative outlier loci were found, indicating that divergent and balancing selection, respectively, have shaped patterns of divergence between the two species. Sympatric populations of the two species were found to be less differentiated genetically than allopatric populations, indicating that hybridization has led to gene introgression. We conclude that differentiation between S. latifolia and S. dioica has been shaped by a combination of introgression and selection. These results challenge the view that species differentiation is a genome-wide phenomenon, and instead support the idea that genomes can be porous and that species differentiation has a genic basis.  相似文献   

9.
Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.  相似文献   

10.
In Drosophila, the ratio of the number of X chromosomes to sets of other chromosomes initiates a series of events which result in sexual differentiation. In addition, this ratio establishes dosage compensation, a mechanism which equalizes the products of X-linked genes in males and females. The present review discusses possible genetic entities responsible for the interpretation of chromosomal sex and subsequent sex-mediated regulation during development.  相似文献   

11.
The fungal genus Coccidioides is composed of two species, Coccidioides immitis and Coccidioides posadasii. These two species are the causal agents of coccidioidomycosis, a pulmonary disease also known as valley fever. The two species are thought to have shared genetic material due to gene exchange in spite of their long divergence. To quantify the magnitude of shared ancestry between them, we analyzed the genomes of a population sample from each species. Next, we inferred what is the expected size of shared haplotypes that might be inherited from the last common ancestor of the two species and find a cutoff to find what haplotypes have conclusively been exchanged between species. Finally, we precisely identified the breakpoints of the haplotypes that have crossed the species boundary and measure the allele frequency of each introgression in this sample. We find that introgressions are not uniformly distributed across the genome. Most, but not all, of the introgressions segregate at low frequency. Our results show that divergent species can share alleles, that species boundaries can be porous, and highlight the need for a systematic exploration of gene exchange in fungal species.  相似文献   

12.
13.
14.
Using cline fitting and divergence population genetics, we tested a prediction of Haldane's rule: autosomal alleles should introgress more than z-linked alleles or mitochondrial haplotypes across the Passerina amoena/Passerina cyanea (Aves: Cardinalidae) hybrid zone. We screened 222 individuals collected along a transect in the Great Plains of North America that spans the contact zone for mitochondrial (two genes), autosomal (four loci) and z-linked (two loci) markers. Maximum-likelihood cline widths estimated from the mitochondrial (223 km) and z-linked (309 km) datasets were significantly narrower on average than the autosomal cline widths (466 km). We also found that mean coalescent-based estimates of introgression were larger for the autosomal loci (0.63 genes/generation, scaled to the mutation rate mu) than for both the mitochondrial (0.27) and z-linked loci (0.59). These patterns are consistent with Haldane's rule, but the among-locus variation also suggests many independently segregating loci are required to investigate introgression patterns across the genome. These results provide the first comprehensive comparison of mitochondrial, sex-linked, and autosomal loci across an avian hybrid zone and add to the body of evidence suggesting that sex chromosomes play an important role in the formation and maintenance of reproductive isolation between closely related species.  相似文献   

15.
During the evolutionary process of the sex chromosomes, a general principle that arises is that cessation or a partial restriction of recombination between the sex chromosome pair is necessary. Data from phylogenetically distinct organisms reveal that this phenomenon is frequently associated with the accumulation of heterochromatin in the sex chromosomes. Fish species emerge as excellent models to study this phenomenon because they have much younger sex chromosomes compared to higher vertebrates and many other organisms making it possible to follow their steps of differentiation. In several Neotropical fish species, the heterochromatinization, accompanied by amplification of tandem repeats, represents an important step in the morphological differentiation of simple sex chromosome systems, especially in the ZZ/ZW sex systems. In contrast, multiple sex chromosome systems have no additional increase of heterochromatin in the chromosomes. Thus, the initial stage of differentiation of the multiple sex chromosome systems seems to be associated with proper chromosomal rearrangements, whereas the simple sex chromosome systems have an accumulation of heterochromatin. In this review, attention has been drawn to this contrasting role of heterochromatin in the differentiation of simple and multiple sex chromosomes of Neotropical fishes, highlighting their surprising evolutionary dynamism.  相似文献   

16.
A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice.  相似文献   

17.
Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Miillerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm = 4.326) than the reverse (2Nm = 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm = 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences.  相似文献   

18.
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.  相似文献   

19.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species.  相似文献   

20.
Chromosomes exhibiting elevated levels of differentiation are termed hypervariable but no proposed mechanisms are sufficient to account for such enhanced evolutionary divergence. Both hypervariable sex and supernumerary (B) chromosomes were investigated in the endemic New Zealand frog, Leiopelma hochstetteri, which is chromosomally polymorphic both within and between populations and has sufficiently elevated variation that different populations can be identified solely by their C-banded karyotypes. This frog is further distinguished by the univalent, female-specific W-chromosome (0W/00 sex determination) uniquely possessed by North Island populations. This sex chromosome exhibited variation in morphology, size, and heterochromatin distribution, sufficient to resolve 11 different types, including isochromosomes. Five of the 12 populations examined also had supernumerary chromosomes that varied in number (up to 15 per individual) and morphology. Specific variations seen among the hypervariable chromosomes could have resulted from heterochromatinisation, chromosome fusions, loss-of-function mutations, deletions, and/or duplications. Frogs of the same species from Great Barrier Island, however, had neither supernumeraries nor the female-specific chromosome. The 0W/00 sex chromosome system must have been derived after the isolation of Great Barrier Island from North Island populations by raised sea levels between 14 000 and 8000 years ago. Furthermore, biochemical divergence between populations is minor and therefore the chromosomal variation seen is comparatively recent in origin. The one characteristic common to all known hypervariable chromosomes is curtailment or lack of recombination. Their accelerated evolution therefore is possible via the mechanism of Muller's ratchet, either alone or in concert with other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号