首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.  相似文献   

2.
The efficacy for phytoremediation of five willow species was tested by experimental copper and cadmium uptake in a greenhouse hydroponic system. Five treatments included two concentrations (5 and 25 microM for each metal) and a control. Metal concentrations in solution as well as solution uptake were monitored. Metal resistance was assessed through effects on the dry weight of roots and shoots. The willow species tested were generally resistant of increased Cu and Cd content. Metal accumulation was found in all plant organs of all species. Growth and transpiration were not decreased by 5 microM of copper and 25 microM of cadmium in the solution for most species. 25 microM copper caused injury and reduced the dry weight for all species after 21 d. Salix nigra was highly resistant of both Cu and Cd and accumulated more metals than other species. Future field study should be conducted to confirm the findings and feasibility of the phytoremediation technology using those species.  相似文献   

3.
种子是植物的繁殖器官,其内定殖有一定数量的内生菌,种子内生菌通过垂直传播成为新生植物组织内最早定殖的微生物,对连续几代植物内生菌群落的形成起着决定性作用,并在植物抗逆方面发挥着重要作用.本文对种子内生菌与宿主植物重金属抗性之间的关系及其功能机制进行综述,并对下一步研究方向予以展望.  相似文献   

4.
Abstract

A greenhouse experiment was conducted to evaluate phytotoxicity and distribution of Cu in a tropical soil amended with sewage sludge (Sw) and copper sulfate (CuSO4.5H2O). Samples of a clay soil from the State of Paraná, Brazil were collected at depth of 0–20; 20–40 and 40–60 cm, and brought to the laboratory to be properly accommodated in experimental units (PVC tubes). The Cu treatments were performed by the application of Sw (10 t ha-1) amended with Cu (SB-T), and by CuSO4. H2O (WB-T). Lettuce plants were cultivated in the amended soil in order to predict the toxicity of the Cu. The experiment was conducted for 70 days, and then the lettuce plants and soil samples were collected for analysis. A sequential method was used to separate soil Cu into following fractions: exchangeable, amorphous iron oxide bound, crystalline iron oxide bound, organic matter bound and residual bound. The experimental results showed that Fe, Zn, K, P, Cu and organic matter amounts of the soil increased with the treatment SB-T. The toxic phyto-available Cu content in the soil for the lettuce plants was 80.00 mg kg-1. A percolation study showed that the Cu contents were larger for the first 20 cm of depth, indicating that the metal was not transported down the soil profile. The Cu content of different fractions declined in an order residual > amorphous iron oxide > crystalline iron oxide > organic matter > exchangeable, regardless of treatment performed. Additionally, the Cu contents added from treatments were determined mainly in amorphous iron oxide fraction.  相似文献   

5.
6.
吴国星  高熹  叶恭银  胡萃  程家安 《昆虫学报》2007,50(10):1042-1048
为了评估取食含重金属铜饲料对棕尾别麻蝇Boettcherisca peregrine亲代及子代的生长发育与繁殖的影响,在室内给棕尾别麻蝇初产幼虫饲喂含不同浓度(200, 400,800和1 600 µg/g)Cu2+的饲料直至化蛹,并对亲代和子代的生长发育和繁殖有关指标进行了观察和分析。结果表明:低浓度的Cu2+(200 µg/g)对其体重和体长起促进作用,但对幼虫历期、化蛹率、蛹历期、羽化率、性比、交配率和产仔量无显著作用;较高浓度的Cu2+ 则有抑制作用,且Cu2+处理浓度越高,亲代幼虫、蛹和雌雄成虫的体重越轻,幼虫和蛹的体长越短,化蛹率、羽化率、交配率和产仔量越低,幼虫历期和蛹期越长,成虫寿命越短。但Cu2+处理对成虫性比则无显著的影响。相比之下,经Cu2+处理后雌虫所产的子代若不再经Cu2+处理,其子代生存、生长发育与繁殖则基本不受影响,说明Cu2+对亲代的影响不能遗传至子代。此外,还探讨了该蝇亲代与子代体内Cu2+含量在其变态过程中的变化。  相似文献   

7.
重金属铜抗性菌株的筛选及其生物学特性的研究   总被引:6,自引:0,他引:6  
通过在培养基中加入一定浓度的Cu(CuSO4·5H2 O ,Cu 2 0 0mg·L-1) ,从 4 2份土壤样品中筛选得到 2株具有很强Cu抗性的细菌B和G ,经初步鉴定它们分别属于无色细菌属和芽胞杆菌属。将菌株B和G接种到添加Cu(15 0mg·L-1)的培养液中进行沉淀态铜的活化试验 ,结果表明 ,与不接菌对照相比 ,B和G菌株分别使培养液中有效铜含量增加 4 75 5 %和 2 4 9 5 % ,培养液pH由 6 5分别降低到 4 2和 5 0 ,菌株B和G的活化效能与其代谢产酸有关。B菌株和G菌株最适生长温度为 2 8℃ ,最适 pH分别为 6~ 7和 8,G菌株在 5 %NaCl下生长良好。除抗Cu外 ,两株菌对重金属Pb(40 0mg·L-1)、Cd(10 0mg·L-1)也具抗性。  相似文献   

8.
A variety of bacterial functions are encoded on plasmids, extrachromosomal elements. Examples of plasmid-borne functions are antibiotic production and resistance, degradation of recalcitrant chemicals, virulence factors, and plant symbiotic properties. Several transport systems with diverse functions have recently been found to be carried on plasmids. These systems serve to either accumulate or extrude a compound from a cell. The focus of this review is to present a survey on several of these novel plasmid-borne transport systems emphasizing functions, components, and molecular genetics.  相似文献   

9.
    
Without effective homeostatic systems in place, excess copper (Cu) is universally toxic to organisms. While increased utilization of anthropogenic Cu in the environment has driven the diversification of Cu-resistance systems within enterobacteria, little research has focused on how this change in bacterial architecture impacts host organisms that need to maintain their own Cu homeostasis. Therefore, we utilized a simplified host–microbe system to determine whether the efficiency of one bacterial Cu-resistance system, increasing Cu-efflux capacity via the ubiquitous CusRS two-component system, contributes to the availability and subsequent toxicity of Cu in host Caenorhabditis elegans nematode. We found that a fully functional Cu-efflux system in bacteria increased the severity of Cu toxicity in host nematodes without increasing the C. elegans Cu-body burden. Instead, increased Cu toxicity in the host was associated with reduced expression of a protective metal stress-response gene, numr-1, in the posterior pharynx of nematodes where pharyngeal grinding breaks apart ingested bacteria before passing into the digestive tract. The spatial localization of numr-1 transgene activation and loss of bacterially dependent Cu-resistance in nematodes without an effective numr-1 response support the hypothesis that numr-1 is responsive to the bacterial Cu-efflux capacity. We propose that the bacterial Cu-efflux capacity acts as a robust spatial determinant for a host’s response to chronic Cu stress.  相似文献   

10.
In 1979 and 1980, batch culture experiments were conducted to observe the inhibitory effect of copper ion (concentrations of 10, 50, 100, 200 and 400 µg Cu · l–1) on the standing crops and photosynthesis of phytoplankton of the Saguenay River (for 124 hours) and in Chlorella vulgaris (for 8 days). These algal assays were carried out using the surface water of the Saguenay River. In natural populatoins of phytoplankton, it was found that photosynthesis was more sensitive than growth: at the lowest concentrations, such as 10 µg Cu · 1–1, copper seemed to increase the chlorophyll concentrations whereas the rates of primary production show a decrease of 60% with respect to the control. At higher concentrations of copper, the effect is weak in chlorophyll concentrations and more pronounced in the rates of primary production (decrease of 86 to 90%). The pennate diatoms are dominant (in all the samples) and these organisms are known as relatively resistant to copper. In Chlorella vulgaris, it was observed that with 100 µg Cu · 1–1, chlorophyll concentrations and rates of photosynthesis respectively decrease by 63 and 99% with respect to the control. At higher concentrations of copper, a maximum decrease of 70% and 99% respectively for chlorophyll concentrations and rates of primaryproduction are observed.
  相似文献   

11.
    
The two isoforms of copper metallothionein (CuMT) gene of a copper resistant ciliate, Tetrahymena tropicalis lahorensis (Ttl), have been isolated and characterized. The molecular cloning and nucleotide sequencing of cDNAs coding for the two CuMT isoforms revealed that TtlCuMT1 gene has 300, while TtlCuMT2 has 327 nucleotides, both with ATG as the initiation codon and TGA as the translational termination codon. TAG codes for glutamine in TtlCuMT2 gene which is peculiar to Tetrahymena. The deduced or translated TtlCuMT1 and TtlCuMT2 peptide sequences contain 100 and 108 amino acid residues including 28 and 32 cysteine residues, respectively. The amino acid sequences of TtlCuMT1 and TtlCuMT2 have special features of two and three CXCXXCXCXXCXC intragenic tandem repeats with a conserved structural pattern of cysteine, respectively. The predicted tertiary structures of these two isoforms indicate two domains. Domain I and the initial part of domain II showed >98% homology with other Tetrahymena CuMT. On the basis of the differences in the domain II, the metallothionein subfamily 7b can be divided into two groups, one (TtlCuMT1) comprising >100 amino acids and the other (TtlCuMT2) comprising <100 amino acids. This is a novel finding of the present study as no such report on this type of classification exists at the moment. TtlCuMT1 has 95%, while TtlCuMT2 has 97% resemblance with the previously reported CuMT genes of Tetrahymena spp. SDS‐PAGE analysis using fluorescent probe as well as coomassie brilliant blue staining also confirmed the presence of metallothionein. J. Cell. Biochem. 110: 630–644, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Adult female frogs Rana ridibunda were exposed to 50 and 100 ppm of Cu (as CuCl2) dissolved in water for 5, 15 and 30 days. We measured the Cu content in the liver, kidneys, ventral skin, and large intestine. Hepatic metallothionein (MT) was also measured and we identified by elution the type of proteins bound to copper. Gross morphological characteristics of the frogs were not affected by Cu accumulation. Cu uptake took place first across the skin, then accumulated first in the large intestine, and then in the liver which was continuously accumulating Cu at all exposure concentrations and times. The highest concentration of the metal was recorded in the kidneys at 30 days and 100 ppm exposure. It appears that the kidneys act as the secondary route of Cu detoxification, probably after a Cu overload of liver. The concentration of hepatic MT increased with the increase of Cu concentration in liver at the 5th and 15th day of exposure but we observed a decrease by the end of the experiment. Cu was observed in the MT-fraction, and in the high-molecular weight protein fraction.  相似文献   

14.
基于分子水平上对植物吸收、解毒、忍耐以及超富集重金属的几个关键步骤的认识,以及一些功能基因相继在细菌、酵母、植物和动物中被分离、鉴定,近年来,人们利用转基因技术提高植物重金属抗性和富集能力方面已获得进展, 一些功能基因(如gsh1, MerAArsC)及其工程植物已显示出植物修复产业化潜力。特别对转基因技术所采取的分子生物学途径、达到的效果以及存在的问题进行了详述,对今后研究的重点和策略进行了探讨。  相似文献   

15.
    
It is widely accepted that the increased use of antibiotics has resulted in bacteria with developed resistance to such treatments. These organisms are capable of forming multi‐protein structures that bridge both the inner and outer membrane to expel diverse toxic compounds directly from the cell. Proteins of the resistance nodulation cell division (RND) superfamily typically assemble as tripartite efflux pumps, composed of an inner membrane transporter, a periplasmic membrane fusion protein, and an outer membrane factor channel protein. These machines are the most powerful antimicrobial efflux machinery available to bacteria. In Escherichia coli, the CusCFBA complex is the only known RND transporter with a specificity for heavy metals, detoxifying both Cu+ and Ag+ ions. In this review, we discuss the known structural information for the CusCFBA proteins, with an emphasis on their assembly, interaction, and the relationship between structure and function.  相似文献   

16.
采用水培试验,研究蚓粪及蚯蚓培养载体牛粪中水溶性有机物(DOM)对不同Cu2+浓度下(0、5、10 mg·L-1)黑麦草吸收Cu2+的影响.结果表明:随着Cu2+浓度的增加,黑麦草地上部、根干质量,以及根系的长度、表面积、体积和根尖数均逐渐下降;DOM显著增加了Cu2+处理下黑麦草地上部及根系生物量,促进了其根系的长度、表面积、体积和根尖数的增长.DOM降低了黑麦草地下部Cu2+浓度,促进了Cu2+从地下部向地上部的运输,显著增加了地上部Cu2+积累量.蚓粪DOM对黑麦草的影响优于牛粪DOM,并且供试高浓度DOM效果优 于低浓度.  相似文献   

17.
李影  陈明林 《生态学报》2010,30(21):5949-5957
通过盆栽模拟栽培试验,研究了节节草生长对铜尾矿砂重金属形态转化和土壤酶活性的影响。结果表明,节节草生长显著提高了尾矿砂中有机物结合态重金属比例(P0.01),降低了交换态和残渣态重金属比例(P0.05)。土壤过氧化氢酶、脲酶、多酚氧化酶和蔗糖酶活性均随着节节草的生长而不同程度的升高,其中过氧化氢酶和脲酶活性均与植物生长时间呈显著正相关(r过氧化氢酶=0.911,P0.05;r脲酶=0.957,P0.01),多酚氧化酶和蔗糖酶活性在植物生长旺盛期达到峰值,分别是对照组的2.40和2.02倍,随后迅速下降;而磷酸酶活性却显著下降(r磷酸酶=-0.923,P0.05)。土壤酶活性与节节草地下部分干重的相关性大于地上部分;且与土壤有机物结合态重金属的含量呈显著正相关,与交换态和残渣态重金属含量呈显著负相关。节节草生长不仅促进了铜尾矿砂重金属朝螯合态方面转化,有效降低重金属的生物有效性,同时还显著地改善了铜尾矿砂的基质环境和土壤肥力。因此,节节草在铜尾矿废弃地恢复实践中具有较大的应用潜力。  相似文献   

18.
    
Being unable to move away from their places of germination, in order to avoid excess metal-induced damages, plants have to evolve different strategies and complex regulatory mechanisms to survive harsh conditions. While both ROS and auxin are documented to be important in plant response to metal stress, the mechanisms underlying the crosstalk between ROS and auxin in metal stress are poorly understood. In this review, we provide an update on the regulation of plant responses to metal-stress by ROS and auxin signaling pathways, primarily, with a focus on the copper, aluminum and cadmium stress. We aim at surveying the mechanisms underlying how metal stress modulates the changes in auxin distribution and the network of ROS and auxin in plant response to metal stress based on recent studies.  相似文献   

19.
A nutrient thin film hydroponic system has been developed which allows rapid screening of willow (Salix) clones for their resistance to heavy metals, and hence their use in phytoremediation. Two clones known to be different in their resistance to heavy metals (Salix burjatica (Germany) and S. triandra x viminalis (Q83)), could be distinguished on the basis of leaf biomass, root biomass and stem height after 6 weeks. There were also differences in the uptake of heavy metals between the two clones.  相似文献   

20.
Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed that soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg respectively, which belonged to severe contamination. Fourteen species from 14 genera of 13 families were collected and investigated; except for Ligutrum lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed accumulation index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrum lucidum, Viburnum awabuki, Firmiana simplex, Robina pseudoacacia, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firmiana simplex, Robina pseudoacacia and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrum lucidum, Firmiana simplex, Osmanthus fragrans and Robina pseudoacacia are appropriate to Cu, Pb and Cd multi-metal contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号