首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gap junctions, formed by members of the connexin (Cx) family, are intercellular channels allowing direct exchange of signaling molecules. Gap junction-mediated intercellular communication (GJIC) is a widespread mechanism for homeostasis in organs. GJIC in the immune system is not yet fully understood. Although dendritic cells (DC) reportedly form cell-to-cell contact between DCs in nonlymphoid and lymphoid organs, GJIC between DCs remains unknown. In this study we examined whether DCs form GJIC. XS52 and bone marrow-derived DCs (BMDCs) were tested for GJIC by counting intercellular transfer of Lucifer Yellow microinjected into a cell. Either DC became effectively dye-coupled when activated with LPS plus IFN-gamma or TNF-alpha plus IFN-gamma. LPS- plus IFN-gamma-induced dye-coupling was mediated by DC-derived TNF-alpha. In addition, CpG plus IFN-gamma induced dye-coupling in BMDCs, which was also mediated by DC-derived TNF-alpha. LPS- plus IFN-gamma-induced activation of DCs (assessed by CD40 expression) was observed when there was cell-to-cell contact and was significantly blocked by heptanol, a gap junction blocker. These results indicate that cell-to-cell contact and GJIC are required for effective DC activation. In addition, heptanol significantly inhibited the LPS- plus IFN-gamma-induced up-regulation of the other costimulatory (i.e., CD80 and CD86) and MHC class II molecules expressed by BMDCs, and it significantly reduced their allostimulatory capacity. Among Cx members, Cx43 was up-regulated in dye-coupled BMDCs, and Cx mimetic peptide, a blocker of Cx-mediated GJIC, significantly inhibited the dye-coupling and activation, suggesting the involvement of Cx43. Thus, our study provides the first evidence for GJIC between DCs, which is required for effective DC activation.  相似文献   

5.
Gap junctions and connexins are present in the immune system. In haematopoiesis, connexin 43, the most widely distributed gap junction protein, appears to be a key player in the development of progenitor cells and their communication with stromal cells. Connexin 43 is expressed by macrophages, neutrophils and mast cells. Lymphocytes also express connexin 43, and inhibition of gap junction channels in these cells by using highly specific connexin mimetic reagents has profound effects on immunoglobulin secretion and synthesis of cytokines. Lymphocytes and leukocytes also communicate directly in vitro with endothelial cells via gap junctions. Connexins are implicated in inflammatory reactions in a range of tissues. Their involvement in atherosclerotic plaque formation in the vascular system is also a current growth point in research, and could lead to the development of therapeutic interventions.  相似文献   

6.
We show that connexin expression and in vivo patterns of communication were dramatically altered in response to epidermal wounding. Six hours after injury, Cx26 was up-regulated in the differentiated cells proximal to the wound, but was down-regulated in cells located at the wound edge. In contrast, Cx31.1 and Cx43 were down-regulated in cells both peripheral to and at the wounded edge. These patterns of altered connexin expression were detectable as early as 2 h after wounding and were most pronounced in 24-h old wounds. Increased expression of Cx26 was still evident in the hyperproliferative epidermis of 6-day old wounds. In vivo dye transfer experiments with Lucifer yellow and neurobiotin confirmed that junctional communication patterns were altered in ways consistent with changes in connexin expression. The data thus suggest that intercellular communication is intimately involved in regulating epidermal wound repair.  相似文献   

7.
8.
Migration of lymphocytes across the endothelium of central or peripheral tissues, a process occurring following activation or differentiation, involves cell to cell interactions featuring adhesion and heterotypic signalling 'cross-talk'. Since lymphocytes and endothelial cells express connexins, the subunit proteins of gap junction intercellular channels, we investigated whether these channels feature in heterotypic signalling during transendothelial migration of lymphocytes. We show, using FACS analysis, that calcein, a gap junction permeant fluorescent dye, was transferred from endothelial cell layers to lymphocytes. The gap junction involvement in intercellular dye transfer was reinforced by studies showing that the process was inhibited by connexin mimetic peptides, a new class of reagents shown to block gap junction communication. Further evidence for the involvement of lymphocyte gap junctions in intercellular communication during transendothelial migration was obtained by two-photon laser scanning microscopy. Although gap junctional communication was inhibited by connexin mimetic peptides, they had little influence on the transmigration process.  相似文献   

9.
Gap junction-mediated intercellular communication was analyzed in a model system in which tissue necrosis and remodeling could be modulated. This in vitro system, previously used for analysis of epithelial-mesenchymal tissue interaction, was modified to permit analysis of the presence and extent of intercellular communition by monitoring intercellular transfer of the micro-injected fluorescent dye, Lucifer Yellow. Light and transmission electronmicroscopy were employed to correlate the presence and degree of gap junctional communication (coupling) with tissue morphology. Digital image analysis was used to determine cell density and mitotic indices within the outgrowths of explants. Our results indicated that cell communication in outgrowths adjacent to necrotic foci within an explant was minimal or absent. Cell-coupling in outgrowths adjacent to a compartment of viable mesenchyme was significantly higher-equivalent to unseparated control cultures. A time-course study demonstrated correlation of increased levels of cell-coupling in outgrowths with the level of tissue remodeling within an explant. Our conclusions from these studies are that embryonic mesenchymal cell populations may be selectively uncoupled as a result of alterations in the microenvironment produced by a proximate impaired cell population. It is proposed that endogenous factors in the microenvironment (wound signals), emanating from impaired cell populations, regulate gap junction-mediated intercellular communication in adjacent viable tissue. Normal, unimpaired populations of cells surrounding an area of injury are thereby isolated from the effects of a potentially toxic environment. This could serve as a protective function in development and may represent, in a more general sense, part of the repertoire of events associated with tissue repair and remodeling.  相似文献   

10.
Undifferentiated mesenchymal cells in the limb bud integrate a complex array of local and systemic signals during the process of cell condensation and chondrogenic differentiation. To address the relationship between bone morphogenetic protein (BMP) signaling and gap junction-mediated intercellular communication, we examined the effects of BMP-2 and a gap junction blocker 18 alpha glycyrrhetinic acid (18alpha-GCA) on mesenchymal cell condensation and chondrogenic differentiation in an in vitro chondrogenic model. We find that connexin43 protein expression significantly correlates with early mesenchymal cellular condensation and chondrogenesis in high-density limb bud cell culture. The level of connexin43 mRNA is maximally upregulated 48 h after treatment with recombinant human BMP-2 with corresponding changes in protein expression. Inhibition of gap junction-mediated intercellular communication with 2.5 microM 18alpha-GCA decreases chondrogenic differentiation by 50% at 96 h without effects on housekeeping genes. Exposure to 18alpha-GCA for only the first 24-48 h after plating does not affect condensation or later chondrogenic differentiation suggesting that gap junction-mediated intercellular communication is not critical for the initial phase of condensation but is important for the onset of differentiation. 18alpha-GCA can also block the chondrogenic effects of BMP-2 without effects on cell number or connexin43 expression. These observations demonstrate 18alpha-GCA-sensitive regulation of intercellular communication in limb mesenchymal cells undergoing chondrogenic differentiation and suggest that BMP-2 induced chondrogenic differentiation may be mediated in part through the modulation of connexin43 expression and gap junction-mediated intercellular communication.  相似文献   

11.
Gap junction-mediated intercellular coupling is higher in the equatorial region of the lens than at either pole, a property believed to be essential for lens transparency. We show that fibroblast growth factor (FGF) upregulates gap junctional intercellular dye transfer in primary cultures of embryonic chick lens cells without detectably increasing either gap junction protein (connexin) synthesis or assembly. Insulin and insulin-like growth factor 1, as potent as FGF in inducing lens cell differentiation, had no effect on gap junctions. FGF induced sustained activation of extracellular signal-regulated kinase (ERK) in lens cells, an event necessary and sufficient to increase gap junctional coupling. We also identify vitreous humor as an in vivo source of an FGF-like intercellular communication-promoting activity and show that FGF-induced ERK activation in the intact lens is higher in the equatorial region than in polar and core fibers. These findings support a model in which regional differences in FGF signaling through the ERK pathway lead to the asymmetry in gap junctional coupling required for proper lens function. Our results also identify upregulation of intercellular communication as a new function for sustained ERK activation and change the current paradigm that ERKs only negatively regulate gap junction channel activity.  相似文献   

12.
Two metabolic cooperation-deficient variants, 1P9 and 2P2[1], have been isolated from the embryonic stem cell line B2B2. Characterization of these cell lines has shown that both variants are severely restricted with respect to embryoid body differentiation capacity while a revertant isolated from 1P9, designated 2H4, has its differentiation phenotype restored to a level comparable with that of the parent line. These results are interpreted as indicating that the metabolic cooperation deficiency and the restricted differentiation phenotype of 1P9 are causally related. A revertant isolated from 2P2[1], designated H19, remains severely restricted with regard to embryoid body differentiation, suggesting that in these lines a secondary event deleterious to differentiation, but unrelated to metabolic cooperation, has taken place.  相似文献   

13.
Homeostasis in the lens is dependent on an extensive network of cell-to-cell gap junctional channels. Gap junction-mediated intercellular coupling (GJIC) is higher in the equatorial region of the lens than at either pole, an asymmetry believed essential for lens transparency. Primary cultures of embryonic chick lens epithelial cells up-regulate GJIC in response to purified fibroblast growth factor (FGF)1/2 or to medium conditioned by vitreous bodies, the major reservoir of factors (including FGF) for the lens equator. We show that purified bone morphogenetic protein (BMP)2, -4, and -7 also up-regulate GJIC in these cultures. BMP2, -4, or both are present in vitreous body conditioned medium, and BMP4 and -7 are endogenously expressed by lens cells. Remarkably, lens-derived BMP signaling is required for up-regulation of GJIC by purified FGF, and sufficient for up-regulation by vitreous humor. This is the first demonstration of an obligatory interaction between FGF and BMPs in postplacode lens cells, and of a role for FGF/BMP cross-talk in regulating GJIC in any cell type. Our results support a model in which the angular gradient in GJIC in the lens, and thus proper lens function, is dependent on signaling between the FGF and BMP pathways.  相似文献   

14.
15.
16.
Gap junctional communication in the male reproductive system   总被引:7,自引:0,他引:7  
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.  相似文献   

17.
Direct communication between hepatocytes, mediated by gap junctions, constitutes a major regulatory platform in the control of liver homeostasis, ranging from hepatocellular proliferation to hepatocyte cell death. Inherent to this pivotal task, gap junction functionality is frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity and carcinogenicity. In the present paper, the deleterious effects of a number of chemical and biological toxic compounds on hepatic gap junctions are discussed, including environmental pollutants, biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. Particular attention is paid to the molecular mechanisms that underlie the abrogation of gap junction functionality. Since hepatic gap junctions are specifically targeted by tumor promoters and epigenetic carcinogens, both in vivo and in vitro, inhibition of gap junction functionality is considered as a suitable indicator for the detection of nongenotoxic hepatocarcinogenicity.  相似文献   

18.
19.
Gap junctions play an important role in vital functions, including the regulation of cell growth and cell differentiation. Connexins 43 (Cx43) are the most widely expressed gap junction proteins. Cellular localization of phosphorylated Cx43 has been implicated in the capacity of gap junctional intercellular communication (GJIC). To follow the functionality of GJIC of different cell types, in monolayer cultures, characterized by different patterns of phosphorylated Cx43, we used a fluorescence recovery after photobleaching (FRAP) technique, and compared two tracers, 5(6)-carboxyfluorescein diacetate (CFDA) and calcein acetoxymethylester (AM). The GJIC capacity was quantified by estimating fluorescence redistribution parameters. The functionality of GJIC was in relation with the staining localization of phosphorylated Cx43 to the cell-cell contact areas, corresponding to gap junctions between contacting cells. GJIC involvement in fluorescence restitution after photobleaching was checked by a gap junction channel inhibition assay. We demonstrated that the choice of the dye did not significantly influence the fluorescence recovery percentages despite a cell line-dependent CFDA release, whereas it had an important impact on fluorescence kinetic profiles. This study reinforces the interest of the gap-FRAP approach to quantify modifications in the functionality of gap junctions and, above all, argues about the limits of CFDA for 3-D future approaches.  相似文献   

20.
The development of the central nervous system is a complex process involving multiple interactions between various cell types undergoing mitosis, migration, differentiation, axonal outgrowth, synaptogenesis and programmed cell death. For example, neocortical development is characterized by a series of transient events that ultimately leads to the formation of a discrete pattern of laminar and columnar organization. While neuron-glial cell-cell interactions have been shown to be involved in neuronal migration, recent observations that neurons are extensively coupled by gap junctions in the developing neocortex have implicated this phenomenon in the process of neocortical differentiation. The present review will examine the putative role of gap junctional intercellular communication in development of the central nervous system, with specific reference to recent studies in the development of the cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号