首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 700–714, 1998  相似文献   

2.
Neuronal networks are balanced by mechanisms of homeostatic plasticity, which adjusts synaptic strength via molecular and morphological changes in the pre- and post-synapse. Here, we wondered whether the hyaluronic acid-based extracellular matrix (ECM) of the brain is involved in mechanisms of homeostatic plasticity. We hypothesized that the ECM, being rich in chondroitin sulfate proteoglycans such as brevican, which are suggested to stabilize synapses by their inhibitory effect on structural plasticity, must be remodelled to allow for structural and molecular changes during conditions of homeostatic plasticity. We found a high abundance of cleaved brevican fragments throughout the hippocampus and cortex and in neuronal cultures, with the strongest labelling in perineuronal nets on parvalbumin-positive interneurons. Using an antibody specific for a brevican fragment cleaved by the matrix metalloprotease ADAMTS4, we identified the enzyme as the main brevican-processing protease. Interestingly, we found ADAMTS4 largely associated with synapses. After inducing homeostatic plasticity in neuronal cell cultures by prolonged network inactivation, we found increased brevican processing at inhibitory as well as excitatory synapses, which is in line with the ADAMTS4 subcellular localization. Thus, the ECM is remodelled in conditions of homeostatic plasticity, which may liberate synapses to allow for a higher degree of structural plasticity.  相似文献   

3.
Our daily experiences and learnings are stored in the form of memories. These experiences trigger synaptic plasticity and persistent structural and functional changes in neuronal synapses. Recently, cellular studies of memory storage and engrams have emerged over the last decade. Engram cells reflect interconnected neurons via modified synapses. However, we were unable to observe the structural changes arising from synaptic plasticity in the past, because it was not possible to distinguish the synapses between engram cells. To overcome this barrier, dual-eGRASP (enhanced green fluorescent protein reconstitution across synaptic partners) technology can label specific synapses among multiple synaptic ensembles. Selective labeling of engram synapses elucidated their role by observing the structural changes in synapses according to the memory state. Dual-eGRASP extends cellular level engram studies to introduce the era of synaptic level studies. Here, we review this concept and possible applications of the dual-eGRASP, including recent studies that provided visual evidence of structural plasticity at the engram synapse.  相似文献   

4.
Short-term synaptic plasticity influences how presynaptic spike patterns control the firing of postsynaptic targets. Here we investigated whether specific mechanisms of short-term plasticity are regulated in a target-dependent manner by comparing synapses made by cerebellar granule cell parallel fibers onto Golgi cells (PF-->GC synapse) and Purkinje cells (PF-->PC synapse). Both synapses exhibited similar facilitation, suggesting that any differential short-term plasticity does not reflect differences in the initial release probability. PF-->PC synapses were highly sensitive to stimulus bursts, which could result in either depression of subsequent responses, mediated by endocannabinoid-dependent retrograde signaling, or enhancement of responses through posttetanic potentiation (PTP). In contrast, stimulus bursts had remarkably little effect on the strength of PF-->GC synapses. Unlike PCs, GCs were unable to regulate their PF synapses by releasing endocannabinoids. Moreover, PTP was reduced at the PF-->GC synapse compared to the PF-->PC synapse. Thus, the target-dependence of PF synapses arises from the differential expression of both retrograde signaling and PTP.  相似文献   

5.
Kuner T  Augustine GJ 《Neuron》2000,27(3):447-459
We constructed a novel optical indicator for chloride ions by fusing the chloride-sensitive yellow fluorescent protein with the chloride-insensitive cyan fluorescent protein. The ratio of FRET-dependent emission of these fluorophores varied in proportion to the concentration of Cl and was used to measure intracellular chloride concentration ([Cl-]i) in cultured hippocampal neurons. [Cl-]i decreased during neuronal development, consistent with the shift from excitation to inhibition during maturation of GABAergic synapses. Focal activation of GABAA receptors caused large changes in [Cl-]i that could underlie use-dependent depression of GABA-dependent synaptic transmission. GABA-induced changes in somatic [Cl-]i spread into dendrites, suggesting that [Cl-]i can signal the location of synaptic activity. This genetically encoded indicator will permit new approaches ranging from high-throughput drug screening to direct recordings of synaptic Cl- signals in vivo.  相似文献   

6.
Perforated synapses and plasticity   总被引:1,自引:0,他引:1  
Against a background of existing models relating perforated synapses to synaptic plasticity, the numerical density and frequency of perforated synapses in rat neocortex have been assessed from 1 d to 22 mo of age using the disector procedure, and changes in their morphology were assessed using 3-D computer reconstructions. The data point toward perforated and nonperforated synapses being separate synaptic populations from early in development, and with perforated synapses playing a part in the maintenance of neuronal postsynaptic density surface area from mid-adulthood onwards. This suggests that they play a crucial role in synaptic plasticity, although its nature may be different from that postulated by most recent workers.  相似文献   

7.
Autapses are connections between a neuron and itself. These connections are morphologically similar to “normal” synapses between two different neurons, and thus were long thought to have similar properties of synaptic transmission. However, this has not been directly tested. Here, using a micro-island culture assay in which we can define the number of interconnected cells, we directly compared synaptic transmission in excitatory autapses and in two-neuron micronetworks consisting of two excitatory neurons, in which a neuron is connected to one other neuron and to itself. We discovered that autaptic synapses are optimized for maximal transmission, and exhibited enhanced EPSC amplitude, charge, and RRP size compared to interneuronal synapses. However, autapses are deficient in several aspects of synaptic plasticity. Short-term potentiation only became apparent when a neuron was connected to another neuron. This acquisition of plasticity only required reciprocal innervation with one other neuron; micronetworks consisting of just two interconnected neurons exhibited enhanced short-term plasticity in terms of paired pulse ratio (PPR) and release probability (Pr), compared to autapses. Interestingly, when a neuron was connected to another neuron, not only interneuronal synapses, but also the autaptic synapses on itself exhibited a trend toward enhanced short-term plasticity in terms of PPR and Pr. Thus neurons can distinguish whether they are connected via “self” or “non-self” synapses and have the ability to adjust their plasticity parameters when connected to other neurons.  相似文献   

8.
While the development and plasticity of excitatory synaptic connections have been studied into detail, little is known about the development of inhibitory synapses. As proposed for excitatory synapses, recent studies have indicated that activity-dependent forms of synaptic plasticity, such as long-term potentiation and long-term depression, may play a role in the establishment of functional inhibitory synaptic connections. Here, I review these different forms of plasticity and focus on their possible role in the developing neuronal network.  相似文献   

9.
It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.  相似文献   

10.
Sensory experience drives plasticity of the body map in developing and adult somatosensory cortex, but the synaptic mechanisms underlying such plasticity are not well understood. Recently, several mechanisms that are likely to contribute to map plasticity have been directly observed in response to altered experience in vivo. These mechanisms include long-term potentiation and long-term depression at specific excitatory synapses, competition between lemniscal (barrel) and non-lemniscal (septal) processing streams, and regulation of the number of inhibitory synapses.  相似文献   

11.
Structural plasticity of synapses in Alzheimer's disease   总被引:1,自引:0,他引:1  
Plasticity of the synaptic contact zone was previously observed following loss of synapses in the cerebral cortex of normal aging humans. The present study was undertaken to determine if there was quantitative evidence of synapse loss and synapse plasticity in the inferior temporal, superior parietal, parieto-occipital, and superior frontal cortical regions in Alzheimer's disease (AD), and how such changes related to the neurofibrillary tangles and amyloid plaques. The results showed that age at autopsy did not correlate with the numbers of synapses, plaques, or tangles. However, the numbers of synapses strongly reflected the pathology of AD; in all four brain regions, there were fewer synapses as the numbers of plaques and tangles increased. In the inferior temporal and superior parietal cortices, the loss of synapses was accompanied by an increase in the synaptic contact length. The results suggest that, in some cerebral cortical brain regions, synapses are capable of plasticity changes, even when the pathology of AD and loss of synapses are severe.  相似文献   

12.
The synaptic plasticity is a background for learning and memory. Identifiable synapses that are the synapses between individually identifiable neurons are a very convenient model for studying plasticity. Synapses between the interoceptive mechanosensory neurons and the command neurons of the withdrawal behavior were identified in the Helix lucorum brain. It was shown that synaptic plasticity estimated by the dynamics of the elementary postsynaptic potentials elicited by single presynaptic spikes differed from the synaptic plasticity estimated by the dynamics of compound synaptic responses of the same neurons to sensory stimulation. Habituation and heterosynaptic facilitation phenomena are discussed in terms of the dynamics of the elementary postsynaptic potentials.  相似文献   

13.
Rearrangement of molecular structures at individual synapses can contribute to network plasticity. At mossy fiber presynaptic terminals, experience regulates both connectivity and structure of individual boutons. Moreover, dendritic spines and postsynaptic densities of glutamatergic synapses rapidly form and remodel in an activity-dependent manner. Recent studies of the postsynaptic scaffold molecule gephyrin have now revealed that also inhibitory shaft synapses undergo rapid remodeling at the postsynaptic scaffold level. Taking into account that also surface membrane receptors are highly mobile, local coincidence of receptors and scaffold elements in adjacent layers at dendritic shafts might depend on regulatory processes underlying synaptic plasticity.  相似文献   

14.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.  相似文献   

15.
Boettiger CA  Doupe AJ 《Neuron》2001,31(5):809-818
We provide evidence here of long-term synaptic plasticity in a songbird forebrain area required for song learning, the lateral magnocellular nucleus of the anterior neostriatum (LMAN). Pairing postsynaptic bursts in LMAN principal neurons with stimulation of recurrent collateral synapses had two effects: spike timing- and NMDA receptor-dependent LTP of the recurrent synapses, and LTD of thalamic afferent synapses that were stimulated out of phase with the postsynaptic bursting. Both types of plasticity were restricted to the sensory critical period for song learning, consistent with a role for each in sensory learning. The properties of the observed plasticity are appropriate to establish recurrent circuitry within LMAN that reflects the spatiotemporal pattern of thalamic afferent activity evoked by tutor song. Such circuit organization could represent a tutor song memory suitable for reinforcing particular vocal sequences during sensorimotor learning.  相似文献   

16.
Agonist-induced internalization of transmembrane receptors is a widespread biological phenomenon that also may serve as a mechanism for synaptic plasticity. Here we show that the agonist AMPA causes a depression of AMPA receptor (AMPAR) signaling at glutamate synapses in the CA1 region of the hippocampus in slices from developing, but not from mature, rats. This developmentally restricted agonist-induced synaptic depression is expressed as a total loss of AMPAR signaling, without affecting NMDA receptor (NMDAR) signaling, in a large proportion of the developing synapses, thus creating AMPAR silent synapses. The AMPA-induced AMPAR silencing is induced independently of activation of mGluRs and NMDARs, and it mimics and occludes stimulus-induced depression, suggesting that this latter form of synaptic plasticity is expressed as agonist-induced removal of AMPARs. Induction of long-term potentiation (LTP) rendered the developing synapses resistant to the AMPA-induced depression, indicating that LTP contributes to the maturation-related increased stability of these synapses. Our study shows that agonist binding to AMPARs is a sufficient triggering stimulus for the creation of AMPAR silent synapses at developing glutamate synapses.  相似文献   

17.
Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses.  相似文献   

18.
Synapses are the structural and functional joints of neuronal circuits, and brain function is fundamentally based on synaptic quantal transmission and plasticity. Precise mapping of key components within individual synapses in different states can reveal the principles governing synapse formation, transmission, and plasticity and improving understanding of the mechanisms of synapse-related diseases. Cryo-electron tomography (cryo-ET) and correlative microscopy are increasingly powerful tools that can dissect the molecular sociology of intact cells, including neuronal synapses. In this study, we discuss current progress made in cryo-ET studies assessing neuronal synapses, especially sample preparation, molecule identification, and correlative approaches for synaptic dynamics and functions.  相似文献   

19.
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and L?mo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.  相似文献   

20.
Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in?vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号