首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrected fluorescence properties of yeast alcohol dehydrogenase and its coenzyme complexes have been investigated as a function of temperature. Dissociation constants have been obtained for binary and ternary complexes of NAD and NADH by following the enhancement of NADH fluorescence or the quenching of the protein fluorescence. It is found that the presence of pyrazole increases the affinity of NAD to the enzyme approximately 100-fold. The formation of the ternary enzyme - NAD - pyrazole complex is accompanied by a large change in the ultraviolet absorption properties, with a new band in the 290-nm region. Significant optical changes also accompany the formation of the ternary enzyme-NADH-acetamide complex. The possible origin for the quenching of the protein fluorescence upon coenzyme binding is discussed, and it is suggested that a coenzyme-induced conformational change can cause it. Thermodynamic parameters associated with NAD and NADH binding have been evaluated on the basis of the change of the dissociation constants with temperature. Optical and thermodynamic properties of binary and ternary complexes of yeast alcohol dehydrogenase are compared with the analogous properties of horse liver alcohol dehydrogenase.  相似文献   

2.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

3.
Horse-liver alcohol dehydrogenase was carboxymethylated with iodoacetate, which is known to selectively alkylate cysteine-46 in the polypeptide sequence. Carboxymethyl and native enzyme had the same electrophoretic mobility on starch or polyacrylamide gel, but some separation was achieved when isobutyramide and a low concentration of NADH were present (under these conditions NADH was bound by native enzyme but not by Carboxymethyl enzyme).The Carboxymethyl enzyme formed ternary complexes with NAD+ and pyrazole or decanoate. The fluorescence emission of NADH was enhanced 7- to 8-fold (at 410 nm), and a dissociation-constant of 1.7 μM was calculated at pH 7.4; but, in contrast to native enzyme, neither the affinity nor fluorescence were increased by amides (acetamide or isobutyramide).Carboxymethyl alcohol dehydrogenase possesses catalytic activity. Higher alcohols gave maximum velocities up to 7-fold higher than ethanol (reaching nearly 20% of the activity of native enzyme) while [2H]ethanol showed an isotope-rate effect of 3.3. Although the affinity for aldehydes was considerably increased, the maximum velocity of aldehyde-reduction was always at least 20% of that shown by native enzyme, and at pH 9.9 it was almost 2-fold greater than with native enzyme. The rate-limiting step in alcohol-oxidation is likely to be the interconversion of ternary complexes (possibly the hydride-transfer step), while in aldehyde-reduction it could still be the dissociation of the enzyme/NAD+ complex. This is also indicated by inhibition experiments with decanoate, pyrazole, and isobutyramide.These results suggest that a major effect of carboxymethylation is upon ternary complexes of enzyme and NADH, which become much more reluctant to form, either by combination of NADH and ligand with the modified enzyme, or by catalytic conversion of the enzyme/NAD +/alcohol complex.  相似文献   

4.
The transient-state kinetics of enzymic reduction of acetaldehyde and benzaldehyde by NADH, catalyzed by horse liver alcohol dehydrogenase, have been examined under single-turnover conditions, obtained by carrying out reactions either with limiting amounts of enzyme in the presence of 20 mM pyrazole or with limiting amounts of substrate. Analysis of the variation with substrate, coenzyme, and enzyme concentrations of amplitudes and time constants for the exponential transients observed at 328 nm and 300 nm shows that the kinetics of enzymic aldehyde reduction are qualitatively and quantitatively consistent with the relationships derived in the preceding paper for an ordered ternary-complex mechanism involving identical and independent catalytic sites. It is concluded that there is no evidence whatsoever for the kinetic significance of a half-of-the-sites reactivity or any other kind of subunit interaction in the liver alcohol dehydrogenase system. The biphasic transients observed at 328 nm for the reduction of aromatic aldehydes such as benzaldehyde are a normal kinetic characteristic of the ordered ternary-complex mechanism, being attributable to accumulation of the ternary enzyme-NAD-product complex when product dissociation from this complex is slow in comparison to its formation by ternary-complex interconversion.  相似文献   

5.
Examination of the model of the fixation site of the adenosine phosphate part of NAD+ on horse liver alcohol dehydrogenase led us to synthesize a NAD+ analogue N6-[N-(8-amino-3,6-dioxaoctyl)carbamoylmethyl]-NAD+ in order to alkylate the carboxylic acid group of Asp-273 and to convert the normally dissociable coenzyme into a permanently bound prosthetic group. This NAD+ analogue is coupled to the horse liver alcohol dehydrogenase in the ternary complex formed with pyrazole. In these conditions the degree of fixation varies between 0.4 and 0.58 coenzyme molecule/enzyme subunit molecule. The N6-[N-(8-amino-3,6-dioxaoctyl)carbamoylmethyl]NAD+ acts as a true prosthetic group which can be reduced and reoxidized by a coupled substrate reaction and the internal activity of this holoenzyme corresponds to the amount of analogue incorporated.  相似文献   

6.
1. Starch gel electrophoresis of adult shrew (Suncus murinus) liver extracts revealed five forms of alcohol dehydrogenase (ADH 1-5) and four of them were purified. 2. ADH-4 and ADH-5 resemble human class I ADH in terms of electrophoretic mobility, substrate specificity and sensitivity to pyrazole inhibition. 3. ADH-2 does not belong to any of the three classes of human ADHs but rather with catalytic properties similar to those of the class B ADH found in guinea pig liver. 4. ADH-1 prefers secondary alcohol over primary alcohol substrates and between the enantiomers tested, the enzyme favors the S isomers.  相似文献   

7.
Glutamate dehydrogenase from pig kidney has been purified to homogeneity by means of affinity chromatography on matrix bound Cibacron Blue F3G-A and gel chromatography on Sepharose 6B. The enzyme exhibits allosteric properties with the substrates alpha-ketoglutarate, ammonium, and NADH, respectively. GTP is a strong inhibitor which strengthened the cooperative interactions between the ammonium binding sites. ADP as an activator relieves the inhibition by GTP. Like glutamate dehydrogenase from bovine liver, glutamate dehydrogenase from pig kidney shows the ability of self-association, too. The sedimentation coefficient increases from 13.5 S at 0.07 mg protein/ml to 19.4 S at 1.32 mg protein/ml. In the sodium dodecylsulphate gel electrophoresis the enzyme migrates as a single band with a molecular-weight at 51000.  相似文献   

8.
Insertion of Cu2+ ions into horse liver alcohol dehydrogenase depleted of its catalytic Zn2+ ions creates an artificial blue copper center similar to that of plastocyanin and similar copper proteins. The esr spectrum of a frozen solution and the optical spectra at 296 and 77 K are reported, together with the corresponding data for binary and ternary complexes with NAD+ and pyrazole. The binary complex of the cupric enzyme with pyrazole establishes a novel type of copper proteins having the optical characteristics of Type 1 and the esr parameters of Type 2 Cu2+. Ternary complex formation with NAD+ converts the Cu2+ ion to a Type 1 center. By an intramolecular redox reaction the cuprous enzyme is formed from the cupric enzyme. Whereas the activity of the cupric alcohol dehydrogenase is difficult to assess (0.5%-1% that of the native enzyme), the cuprous enzyme is distinctly active (8% of the native enzyme). The implications of these findings are discussed in view of the coordination of the metal in native copper proteins.  相似文献   

9.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

10.
Equine liver alcohol dehydrogenase (EC 1.1.1.1) has been purified by a new scheme using a blue agarose gel (Blue Sepharose) as an affinity sorbent. Starting amounts of 0.6 to 10 kg liver have been processed to enzyme possessing 1.5 U/mg average specific activity, in about three to four days. Some parameters concernining adsorption of enzyme to the blue gel as well as recovery therefrom have been explored.  相似文献   

11.
1. Yeast alcohol dehydrogenase has been found to react with NADH in the presence of acetamide to form a highly fluorescent ternary complex. Titration of the enzyme to form this complex has provided a method for the estimation of the number of binding sites on the enzyme. 2. The binding of NADH by the enzyme has been studied independently, with a modified form of equilibrium dialysis, by using gel filtration. 3. A third method, depending upon the formation of a ternary complex of enzyme, hydroxylamine and pyridine-3-aldehyde-adenine dinucleotide, has also been used to titrate the enzyme. 4. Values obtained with all three methods are substantially in agreement that only three coenzyme-binding sites are available. This is in contrast with the established fact that the enzyme is composed of four identical subunits.  相似文献   

12.
The rapid purification of dehydrogenases by a modification of affinity chromatography was investigated. A ternary complex enzyme-NAD(H)-inhibitor (E-NADH-I) was formed by the addition of coenzyme and a substrate-competitive inhibitor to the dehydrogenases initially separated from nondehydrogenases by an NAD-affinity column. The enzyme in the ternary complex cannot rebind to the NAD-agarose column in the presence of inhibitor. As all other dehydrogenases do, this yields a highly purified enzyme-inhibitor complex. Aldehyde dehydrogenases in the presence of chloral hydrate and alcohol dehydrogenase with pyrazole were purified as their E-NAD+-I ternary complexes, while lactic dehydrogenase in the presence of oxamate was purified as the E-NADH-I complex. This technique allows for the rapid separation of a specific dehydrogenase from other dehydrogenases. The technique should be applicable to the purification of other enzymes exhibiting ordered sequential binding.  相似文献   

13.
The lipoamide dehydrogenase of the glycine decarboxylase complex was purified to homogeneity (8 U/mg) from cells of the anaerobe Eubacterium acidaminophilum that were grown on glycine. In cell extracts four radioactive protein fractions labeled with D-[2-14C]riboflavin could be detected after gel filtration, one of which coeluted with lipoamide dehydrogenase activity. The molecular mass of the native enzyme could be determined by several methods to be 68 kilodaltons, and an enzyme with a molecular mass of 34.5 kilodaltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of cell extracts separated by sodium dodecyl sulfate-polyacrylamide or linear polyacrylamide gel electrophoresis resulted in a single fluorescent band. NADPH instead of NADH was the preferred electron donor of this lipoamide dehydrogenase. This was also indicated by Michaelis constants of 0.085 mM for NADPH and 1.1 mM for NADH at constant lipoamide and enzyme concentrations. The enzyme exhibited no thioredoxin reductase, glutathione reductase, or mercuric reductase activity. Immunological cross-reactions were obtained with cell extracts of Clostridium cylindrosporum, Clostridium sporogenes, Clostridium sticklandii, and bacterium W6, but not with extracts of other glycine- or purine-utilizing anaerobic or aerobic bacteria, for which the lipoamide dehydrogenase has already been characterized.  相似文献   

14.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

15.
Pork liver has previously been reported to contain a soluble enzymatic pathway which converts L-fucose to 2-keto-3-deoxy-L-fuconate and D-arabinose to 2-keto-3-deoxy-D-arabonate. We now report the isolation from pork liver of a soluble NAD+-dependent dehydrogenase which acts on both 2-keto-3-deoxy-L-fuconate and 2-keto-3-deoxy-D-arabonate. This enzyme has been purified to homogeneity by a five-step procedure; the final step involved affinity chromatography on NAD+-agarose. A purification factor of about 3000-fold was achieved with a yield of over 20%. The enzyme was homogeneous on polyacrylamide gel electrophoresis at pH 9.1 and 7.0 and on the basis of sedimentation equilibrium analysis with the ultracentrifuge. The molecular weight of the native enzyme is about 100,000 while disc gel electrophoresis in the presence of sodium dodecyl sulfate and thiol showed the presence of a polypeptide of molecular weight 26,800; these results suggest that the enzyme is a tetramer. The enzyme has an isoelectric point of 5.4. The enzyme is unstable in the dilute state and in the absence of thiol but can be kept for 2 years at -70 degrees at a protein concentration of 4 mg per ml and in the presence of 1 mM dithiothreitol.  相似文献   

16.
Heterotropic cooperativity effects in the binding of alcohols and NAD+ or NADH to liver alcohol dehydrogenase have been examined by equilibrium measurements and stopped-flow kinetic studies. Equilibrium data are reported for benzyl alcohol, 2-chloroethanol, 2,2-dichloroethanol, and trifluoroethanol binding to free enzyme over the pH range 6-10. Binary-complex formation between enzyme and alcohols leads to inner-sphere coordination of the alcohol to catalytic zinc and shows a pH dependence reflecting the ionization states of zinc-bound water and the zinc-bound alcohol. The affinity of the binding protonation state of the enzyme for unionized alcohols increases approximately by a factor of 10 on complex formation between enzyme and NAD+ or NADH. The rate and kinetic cooperativity with coenzyme binding of the alcohol association step indicates that enzyme-bound alcohols participate in hydrogen bonding interactions which affect the rates of alcohol and coenzyme equilibration with the enzyme without providing any pronounced contribution to the net energetics of alcohol binding. The pKa values determined for alcohol deprotonation at the binary-complex level are linearly dependent on those of the free alcohols, and can be readily reconciled with the pKa values attributed to ionization of zinc-bound water. Alcohol coordination to catalytic zinc provides a major contribution to the pKa shift which ensures that the substrate is bound predominantly as an alcoholate ion in the catalytically productive ternary complex at physiological pH. The additional pKa shift contributed by NAD+ binding is less pronounced, but may be of particular mechanistic interest since it increases the acidity of zinc-bound alcohols relatively to that of zinc-bound water.  相似文献   

17.
Kovaleva EG  Plapp BV 《Biochemistry》2005,44(38):12797-12808
Binding of NAD+ to wild-type horse liver alcohol dehydrogenase is strongly pH-dependent and is limited by a unimolecular step, which may be related to a conformational change of the enzyme-NAD+ complex. Deprotonation during binding of NAD+ and inhibitors that trap the enzyme-NAD+ complex was examined by transient kinetics with pH indicators, and formation of complexes was monitored by absorbance and protein fluorescence. Reactions with pyrazole and trifluoroethanol had biphasic proton release, whereas reaction with caprate showed proton release followed by proton uptake. Proton release (200-550 s(-1)) is a common step that precedes binding of all inhibitors. At all pH values studied, the rate constants for proton release or uptake matched those for formation of ternary complexes, and the most significant quenching of protein fluorescence (or perturbation of adenine absorbance at 280 nm) was observed for enzyme species involved in deprotonation steps. Kinetic simulations of the combined transient data for the multiple signals indicate that all inhibitors bind faster and tighter to the unprotonated enzyme-NAD+ complex, which has a pK of about 7.3. The results suggest that rate-limiting deprotonation of the enzyme-NAD+ complex is coupled to the conformational change and controls the formation of ternary complexes.  相似文献   

18.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

19.
1. Inactivation of yeast alcohol dehydrogenase for diethyl pyrocarbonate indicates that one histidine residue per enzyme subunit is necessary for enzymic activity. The inactivated enzyme regains its activity over a period of days. 2. Enzyme modified by diethyl pyrocarbonate can form the binary enzyme - NADH complex with the same maximum NADH-binding capacity as that of native enzyme. Modified enzyme cannot form normal ternary complexes of the type enzyme - NADH - acetamide and enzyme - NAD+ - pyrazole, which are characteristic of native enzyme. 3. The rate constant for the reaction of enzyme with diethyl pyrocarbonate has been determined over the pH range 5.5--9. The histidine residue involved has approximately the same pKa as free histidine, but is 10-fold more reactive than free histidine.  相似文献   

20.
1. Some aspects of the substrate specificities of liver and yeast alcohol dehydrogenases have been investigated with pentan-3-ol, heptan-4-ol, (+)-butan-2-ol, (+/-)-butan-2-ol, (+/-)-hexan-3-ol and (+/-)-octan-2-ol as potential substrates. The liver enzyme is active with all substrates tested, including both isomers of each optically active alcohol. In contrast, the yeast enzyme is completely inactive towards those secondary alcohols where both alkyl groups are larger than methyl and active with only the (+)-isomers of butan-2-ol and octan-2-ol. 2. The absence of stereospecificity of liver alcohol dehydrogenase towards optically active secondary alcohols and its broad specificity towards secondary alcohols in general are explained in terms of an alkyl-binding site that will react with a variety of alkyl groups and the ability of the enzyme to accommodate a fairly large unbound alkyl group in an active enzyme-NAD(+)-secondary alcohol ternary complex. The absolute optical specificity of the yeast enzyme towards n-alkylmethyl carbinols and its unreactivity towards pentan-3-ol, hexan-3-ol and heptan-4-ol are explained by its inability to accept alkyl groups larger than methyl in the unbound position in a viable ternary complex. 3. Comparison of the known configurations of the n-alkylmethyl carbinols and [1-(2)H]ethanol and [1-(3)H]geraniol, which have been used in stereospecificity studies with these enzymes by other workers, provides strong evidence for which alkyl group of the substrate is bound to the enzyme in the oxidation of n-alkylmethyl carbinols. The conclusions reached are, for butan-2-ol oxidation with the liver enzyme, confirmed by deductions from kinetic data obtained with (+)-butan-2-ol and a sample of butan-2-ol containing 66% of (-)-butan-2-ol. 4. Initial-rate parameters for the oxidations of (+)-butan-2-ol, 66% (-)-butan-2-ol and pentan-3-ol by NAD with liver alcohol dehydrogenase are presented. The data are completely consistent with a general mechanism of catalysis previously proposed for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号