首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2 and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic (Hx, FiO2 = 0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser133 phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific anti-phosphorylated Ser133-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2 and anti-Bcl-xl antibodies. ATP and PCr values (μmoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 ± 0.39 in Nx vs. 1.19 ± 0.44 in Hx, P < 0.05 vs. Nx; PCr: 3.60 ± 0.40 in Nx vs. 0.70 ± 0.31 in Hx, P < 0.05 vs. Nx). Ser133 phosphorylated CREB protein (OD × mm2) was 74.55 ± 4.75 in Nx and 127.13 ± 19.36 in Hx (P < 0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in CREB protein phosphorylation (correlation coefficient r = 0.82 and r = 0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn brain.  相似文献   

2.
The present study tests the hypothesis that hyperoxia results in increased tyrosine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax & Bad in the mitochondrial fraction of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic [Nx, n = 6], exposed to a FiO2 of 0.21 for 1 h and hyperoxic [Hyx, n = 6], exposed to FiO2 of 1.0 for 1 h. PaO2 in Hyx group was maintained at 400 mmHg while the Nx group was kept at 80 to100 mmHg. The density (O.D.x mm2) of phosphorylated Bcl2 protein on westernblot was 19.3 ± 3.6 in Nx and 41.5 ± 18.3 in Hyx, (P < 0.05). The density of phosphorylated Bcl-xl protein density was 26.9 ± 7.0 in Nx and 47.9 ± 2.5 in Hyx, (P < 0.05). Phosphorylated Bax density was 43.5 ± 5.0 in Nx and 43.3 ± 5.2 in Hyx. Phosphorylated Bad density was 23.6 ± 3.9 in Nx, 24.4 ± 4.7 in Hyx. The data show that during hyperoxia there is a significant increase in tyrosine phosphorylation of Bcl2 and Bcl-xl, while the phosphorylation of proapototic proteins Bax & Bad was not altered. We conclude that hyperoxia leads to post translational modification of anti apoptotic proteins Bcl2 and Bcl-xl in cerebral cortical mitochondria. We propose that phosphorylation of Bcl2 will result in loss of its antiapoptotic potential by preventing its dimerization with Bax leading to activation of the caspase pathway and subsequent neuronal death in the cerebral cortex of the newborn piglets.  相似文献   

3.
Studies indicate that phosphorylated Bcl-2 cannot form a heterodimer with Bax and thus may lose its antiapoptotic potential. The present study tests the hypothesis that graded hypoxia in cerebral tissue induces the phosphorylation of Bcl-2, thus altering the heterodimerization of Bcl-2 with Bax and subsequently leading to apoptosis. Anesthetized, ventilated newborn piglets were assigned to a normoxic and a graded hypoxic group. Cerebral cortical neuronal nuclei were isolated and immunoprecipitated; immune complexes were separated and reacted with Bcl-2 and Bax specific antibodies. The results show an increased level of serine/tyrosine phosphorylated Bcl-2 in nuclear membranes of hypoxic animals. The level of phosphorylated Bcl-2 protein increased linearly with decrease in tissue PCr. The level of phosphorylated Bax in the neuronal nuclear membranes was independent of cerebral tissue PCr. The data shows that during hypoxia, there is increased phosphorylation of Bcl-2, which may prevent its heterodimerization with Bax and lead to increased proapoptotic activity due to excess Bax in the hypoxic brain. Further increased phosphorylation of Bcl-2 may alter the Bcl-2/Bax-dependent antioxidant, lipid peroxidation and pore forming activity, as well as the regulation of intranuclear Ca2+ and caspase activation pathways. We speculate that increased phosphorylation of Bcl-2 in neuronal nuclear membranes is a potential mechanism of programmed cell death activation in the hypoxic brain.  相似文献   

4.
We have shown that hypoxia results in increased influx of nuclear Ca++ and increased expression of nuclear apoptotic proteins. The present study tests the hypothesis that hypoxia alters the distribution of pro-apoptotic proteins Bad and Bax, and the anti-apoptotic proteins Bcl-xl, and Bcl-2 in the nuclear, mitochondrial and cytosolic compartments of the cerebral cortex of newborn piglets and the administration of Clonidine, an inhibitor of high affinity nuclear Ca++ -ATPase, will prevent the hypoxia-induced increase in apoptotic proteins' expression. Studies were conducted in 19 newborn piglets, 6 normoxic (Nx), 7 hypoxic and 6 Clonidine-treated hypoxic (Hx-Clo). Tissue hypoxia was documented biochemically by measuring cerebral tissue ATP and phosphocreatine (PCr) levels. Bax and Bad protein expression increased in all the three compartments during hypoxia, while there was no significant change in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. In Clonidine pretreated hypoxic group, the hypoxia-induced increased expression of pro-apoptotic proteins Bad and Bax was prevented in all the three fractions. We conclude that hypoxia results in increased expression of pro-apoptotic proteins in nuclear, mitochondrial and cytosolic compartments and that the increased expression of pro-apoptotic proteins during hypoxia is nuclear Ca++ -influx-dependent. We propose that during hypoxia the increased ratio of (pro-apoptotic Bad and Bax/anti-apoptotic Bcl-xl and Bcl-2) in all the three compartments, will lead to altered mitochondrial and nuclear membrane permeability as well as caspase-9 activation in the cytosolic compartment.  相似文献   

5.
The present study aims to investigate the mechanism of phosphorylation of apoptotic proteins and tests the hypothesis that the hypoxia-induced increased tyrosine phosphorylation of apoptotic proteins Bcl-2 and Bcl-xl is Ca2+-influx-dependent. Piglets were divided in normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-pretreated with clonidine (Clo + Hx, n = 4) groups. Hypoxic animals were exposed to an FiO2 of 0.06 for 1 h. Clonidine (12.5 μg/kg, IV) was administered to piglets 30 min prior to hypoxia. Hypoxia was confirmed by ATP and phosphocreatinine (PCr) levels. Cytosol was isolated and separated by 12% SDS–PAGE and probed with tyrosine phosphorylated (p) -Bax, Bad, Bcl-2 and Bcl-xl antibodies and bands were detected. The ATP levels (μmol/g brain) in the Nx, Hx, Clo + Hx were 4.3 ± 1.0 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.8 and 1.5 ± 0.3, respectively. The PCr levels in the Nx, Hx, Clo + Hx were 2.7 ± 0.7 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.2 and 0.9 ± 0.9, respectively. Ca2+-influx (pmoles/mg protein) was 4.96 ± 0.94 in Nx, 11.11 ± 2.38 in Hx, and 6.23 ± 2.07 in Clo + Hx (P < 0.05 Nx vs. Hx and Hx vs. Clo + Hx). p-Bcl-2 density was 21.1 ± 1.1 Nx, 58.9 ± 9.6 Hx and 29.5 ± 6.4 Clo + Hx (P < 0.05 vs. Hx). p-Bcl-xl density was 29.6 ± 1.5 Nx, 50.6 ± 7.4 Hx and 32.1 ± 0.1 Clo + Hx (P < 0.05 vs. Hx). p-Bax density was 38.6 ± 16.2 Nx, 46.1 ± 5.5 Hx and 41.6 ± 1.9 Clo + Hx groups (P = NS). p-Bad was 66.7 ± 12.8 Nx, 71.2 ± 6.8 Hx and 78.7 ± 22.5 Clo + Hx groups (P = NS). Results showed that clonidine administration prior to hypoxia prevents the hypoxia-induced increased nuclear Ca2+-influx and increased phosphorylation of Bcl-2 and Bcl-xl while phosphorylation of Bad and Bax was not altered. We conclude that post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl during hypoxia is nuclear Ca2+-influx-dependent. We propose that blockade of nuclear Ca2+-influx that prevents phosphorylation of antiapoptotic proteins may become a neuroprotective strategy.  相似文献   

6.
Mitochondrial control of cell death induced by hyperosmotic stress   总被引:1,自引:2,他引:1  
HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-XL sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control. A. Criollo and L. Galluzzi contributed equally to this work.  相似文献   

7.
The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX “BH3-in-groove homodimer.” Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a “worm hole.”  相似文献   

8.
We have previously shown that hypoxia results in increased activity of caspase-9, caspase-3 and fragmentation of nuclear DNA in the cerebral cortex of newborn piglets. The present study tested the hypothesis that mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets is mediated by caspase-9-dependent caspase-3 activation. Newborn piglets were randomly assigned to normoxic, hypoxic, and hypoxic pretreated with a highly selective caspase-9 inhibitor, Z-LEHD-FMK groups. The data showed that cerebral tissue hypoxia results in increased expression of caspase-activated DNase (CAD) protein in the nucleus and fragmentation of nuclear DNA. A pretreatment with Z-LEHD-FMK attenuated the expression of CAD protein in the nucleus and the fragmentation of nuclear DNA. Based on these results, we conclude that the mechanism by which the nuclear DNA was fragmented is mediated by caspase-9-dependent caspase-3 activation and the consequence of caspase-activated DNase activation in the cerebral cortex of newborn piglets.  相似文献   

9.
Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1–3 (BH1–3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.  相似文献   

10.
Many human pathologies are associated with defects in mitochondria such as diabetes, neurodegenerative diseases or cancer. This tiny organelle is involved in a plethora of processes in mammalian cells, including energy production, lipid metabolism and cell death. In the so-called intrinsic apoptotic pathway, the outer mitochondrial membrane (MOM) is premeabilized by the pro-apoptotic Bcl-2 members Bax and Bak, allowing the release of apoptogenic factors such as cytochrome c from the inter-membrane space into the cytosol. At the same time, mitochondria fragment in response to Drp-1 activation suggesting that mitochondrial fission could play a role in mitochondrial outer-membrane permeabilization (MOMP). In this review, we will discuss the link that could exist between mitochondrial fission and fusion machinery, Bcl-2 family members and MOMP.  相似文献   

11.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

12.
13.
ISG12a is one of the most highly induced genes following treatment of cells with type I interferons (IFNs). The encoded protein belongs to a family of poorly characterized, low molecular weight IFN-inducible proteins that includes 6–16 (G1P3), 1–8U (IFITM3), and 1–8D (IFITM2). Our studies demonstrate that the ISG12a protein associates with or inserts into the mitochondrial membrane. Transient expression of ISG12a led to decreased viable cell numbers and enhanced sensitivity to DNA-damage induced apoptosis, effects that were blocked by Bcl-2 co-expression or treatment with a pan-caspase inhibitor. ISG12a enhanced etoposide induced cytochrome c release, Bax activation and loss of mitochondrial membrane potential. siRNA-mediated inhibition of ectopic ISG12a protein expression prevented the sensitization to etoposide-induced apoptosis and also decreased the ability of IFN-β pretreatment to sensitize cells to etoposide, thereby demonstrating a role for ISG12a in this process. These data suggest that ISG12a contributes to IFN-dependent perturbation of normal mitochondrial function, thus adding ISG12a to a growing list of IFN-induced proteins that impact cellular apoptosis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
目的:研究软骨多糖对L1210白血病小鼠的生长抑制作用,并探讨其抑瘤作用机理。方法:建立DBA/2小鼠L1210腹水瘤模型,将小鼠分为对照组、低剂量组、中剂量组和高剂量组进行实验,通过腹腔注射软骨多糖治疗,每天称重并记录小鼠的生存时间,计算生命延长率。于0h、24h、48h、72h抽取治疗组小鼠的腹水瘤细胞进行细胞周期的分析;采用常规HE染色观察细胞形态学变化;应用免疫荧光方法检测BCL-2和BAD蛋白表达变化,以进一步探讨软骨多糖的抑瘤机制。结果:软骨多糖可以明显提高DBA/2小鼠的生存率;细胞形态学观察可见细胞出现细胞浆浓缩、核固缩及凋亡小体等现象;软骨多糖作用后的L1210细胞,其细胞周期被阻遏于Go/G1期,24h-48h凋亡率迅速上升;Bad蛋白的表达水平于给药24h-72h后升高,抗凋亡基因Bcl-2表达下降。结论:软骨多糖可能通过影响肿瘤细胞周期和Bad、Bcl-2蛋白的表达来诱导L1210细胞凋亡,并显著抑制肿瘤细胞的生长,延长DBA/2小鼠的生存时间,是一种新型的抑癌活性物质。  相似文献   

16.
There is growing concern over detrimental neurologic effects to human newborns caused by increased inspired oxygen concentrations. We hypothesize that hyperoxia (FiO2 > 0.95) results in increased high-affinity Ca2+-ATPase activity, Ca2+-influx, and proapoptotic protein expression in cortical neuronal nuclei of newborn piglets. Neuronal cerebral energy metabolism was documented by determining ATP and phosphocreatine levels. Neuronal nuclear conjugated dienes and fluorescent compounds were measured as indices of lipid peroxidation. High-affinity Ca2+-ATPase activity and ATP-dependent Ca2+-influx were determined to document neuronal nuclear membrane function. Hyperoxia resulted in increases in lipid peroxidation, high-affinity Ca2+-ATPase activity, ATP-dependent Ca2+-influx, and Bax/Bcl-2 ratio in the cortical neuronal nuclei of newborn piglets. We conclude that hyperoxia results in modification of neuronal nuclear membrane function leading to increased nuclear Ca2+-influx, and propose that hyperoxia-induced increases in intranuclear Ca2+ activates the Ca2+/calmodulin-dependent protein kinase pathway, triggering increased CREB protein-mediated apoptotic protein expression in hyperoxic neurons.  相似文献   

17.
The levels of selected neuroregulatory proteins that inhibit or promote apoptotic cell death were measured in the striatum of piglets subjected to precisely controlled 1 h hypoxic insult followed by 0, 2 and 4 h recovery and compared to sham operated animals. The anti-apoptotic proteins: there were increases in Survivin at 0 (157%, P = 0.031) and 4 h (171%, P = 0.033), in Bcl-XL at 0 (138%, P = 0.028) and 4 h (143%, P = 0.007), in VEGF at 4 h (185%, P = 0.019) and Hsp27 at 2 h (144%, P = 0.05) and 4 h (143%, P = 0.05). The pro-apoptotic proteins: caspases-1 and 7 increased at 4 h (135%, P = 0.05) and (129%, P = 0.038), respectively. Bim increased after 4 h (115%, P = 0.028), Apoptosis Inducing Factor after 2 h (127%, P = 0.048) and Calpain after 4 h (143% of control, P = 0.04). Hypoxia causes increase in levels of both anti- and pro-apoptotic proteins. Their relative activity determines the outcome in terms of cell damage and neuronal deficit.  相似文献   

18.
目的:线粒体通透性转换孔通透性改变是导致缺血再灌注损伤的原因,线粒体功能的致命性改变最终引起细胞凋亡,本研究旨在观察线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)在缺血再灌注及缺血预处理脑保护中的作用;方法:将体外培养8天的海马神经元细胞分为五组,正常对照组(A组),缺血再灌注组(B组),缺血预处理+缺血再灌注组(C组),苍术苷+缺血再灌注组(D组),缺血预处理+苍术苷+缺血再灌注组(E组)。使用流式细胞术检测各组细胞凋亡率,罗丹明123染色流式细胞术检测线粒体膜电位,Western-blot检测Bcl-2,Bax的表达。结果:与A组比较,其余四组线粒体膜电位均降低,神经元凋亡率升高(P〈0.05);与B组比较,c组线粒体膜电位升高,神经元凋亡率升高,Bcl-2表达上调,Bax表达下调(P〈0.05);与c组比较,E组粒体膜电位降低,神经元凋亡率升高,Bcl.2表达下调,Bax表达上调(P〈0.05)。结论:我们在细胞及分子生物学水平对MPTP及缺血预处理的研究后发现,缺血预处理能有效减轻海马神经元缺血再灌注损伤,抑制缺血再灌注后神经细胞凋亡,其机制与抑制MPTP的开放有关。  相似文献   

19.
The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these “BH3 mimetics” in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins.  相似文献   

20.
目的研究鱼藤酮致帕金森病(PD)大鼠中脑黑质凋亡相关蛋白Bcl-2、Bax表达的改变。方法Wistar大鼠每日颈背部皮下注射鱼藤酮2mg(kg·d)(3~6周)造模,依据所建立的评分体系记录动物行为变化,在行为学有记分并停止给鱼藤酮4、10d时,中脑黑质病理切片免疫组化染色比较黑质区域Bcl-2、Bax的表达。结果在有行为学记分4d时,记4分和8分的大鼠中脑黑质Bcl-2表达均显著减少;所有PD大鼠中脑黑质Bax表达均显著增加;Bcl-2/Bax比率均显著减少;有记分4d时,行为学记分与Bcl-2/Bax比值成负相关性。结论细胞凋亡参与了鱼藤酮帕金森模型大鼠黑质多巴胺神经细胞的损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号