首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

1. 1.|Body temperature (Tb) and activity of the snake Masticophis flagellum were studied by radiotelemetry in an outdoor enclosure.

2. 2.|Mean diurnal Tb varied little over a wide range of weather conditions, but weather variation was accompanied by major changes in sun exposure and in the timing and duration of activity.

3. 3.|Recently fed snakes reduced activity and exhibited neither a thermophilic response nor increased precision of thermoregulation compared to fasting snakes.

Author Keywords: behaviour; Colubridae; ecology; Masticophis flagellum; radiotelemetry; Reptilia; Serpentes; temperature; thermoregulation  相似文献   


2.
K. Christian    B. Green    G. Bedford    K. Newgrain 《Journal of Zoology》1996,240(2):383-396
The field metabolic rates (FMR) and water fluxes of Varanus scalaris were measured during the wet and dry seasons by the doubly-labelled water technique. Seasonal measurements of standard (night-time) metabolism (SMR) and resting (daytime) metabolism (RMR) were made in the laboratory at 18, 24, 30 and 36°C, and maximal oxygen consumption was measured at 36°C on a motorized treadmill. This population was active throughout the year. In the wet season, the mean FMR was 7.8 kJ day−1 (128.0 kJkg−1 day−1; mean mass = 66.4 g, n = 13), and during the dry season the mean was 5.0 kJ day−1 (67.6 kJ kg−1 day−1; mean mass = 77.4 g, n = 17). The mean water flux rates for these animals were 3.6 and 1.2 ml day−1, respectively (60.4 and 16.6 ml kg−1 day−1). The seasonal means of FMR and water flux were significantly different by ANCOVA ( P < 0.0001). Measurements of SMR and RMR were significantly higher in the wet season (ANCOVA: P < 0.0001), but we found no difference in the maximal oxygen consumption between seasons (ANCOVA: P = 0.6). The maximal oxygen consumption of the lizards on the treadmill (2.9 ml min−1= 1.8 ml g−1 h−1), mean mass = 97.4 g, n = 16) was 20 times that of the SMR at the same temperature during the dry season, and 11 times that of the SMR during the wet season. The seasonal differences in FMR were attributable to: changes in SMR (12.2%) and RMR (16.4%); differences in night-time body temperatures (11.3) and daytime body temperatures (16.4%); and activity (broadly defined to include locomotion, digestion, and reproductive costs (43.7%).  相似文献   

3.
Samples from biogas digesters, sewage ponds, animal house effluents and food processing wastes were used in enrichment systems seeking anaerobic bacteria producing pectinases. Among the 46 anaerobic consortia developed from various samples, four showed high pectinase activity under static anaerobic conditions. Investigation of fermentation variables showed the optimum conditions for pectinase activity were pH 7.0, 45°C and 72 h of growth with 0.5% pectin in the cultivation medium. A 1.4- to 1.6-fold increase in the pectinase activity was achieved under these conditions. The maximum yield of enzymes (62.72 U ml-1 of pectinase, 4.74 U ml-1 of polygalacturonase, 113.30 U ml-1 of pectin lyase, 2.10 U ml-1 of pectinesterase, 0.75 U ml-1 of total cellulase and 9.27 U ml-1 of xylanase) was recorded with the consortia C-S2 developed from decomposed plant samples collected from a pond.  相似文献   

4.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

5.
Abstract The temperature profiles have been determined for O2 reduction by activating substrates for whole cells and cell extracts of the psychrophilic, obligately anaerobic bacterium, strain B6, belonging to the Bacteroidaceae. The profiles were similar whether the cells were grown at 15 or 1°C, and also for cells harvested in the exponential or stationary phase. The H2O producing pyruvate oxidase displayed in cell-free extracts a considerably higher activity than the H2O2 producing NADH and NADPH oxidases at all temperatures in the range 30–1°C, and characteristically makes up a larger proportion of the total O2 reduction capacity the lower the temperature. It thus seems that the O2 scavenging property of the pyruvate oxidase, postulated to be utilized in a defense mechanism against the detrimental effects of the H2O2 producing pyridine nucleotide oxidases, is particularly well adapted to function at the low temperatures of the Barents Sea, from which this obligately anaerobic organism originates.  相似文献   

6.
1. Hyalella montezuma is endemic to Montezuma Well, Arizona, and is exposed to minimal diel and seasonal temperature fluctuations in the pelagic zone (21 ± 4 °C). Juvenile H . montezuma feed in the pelagic zone during the day and migrate into the littoral vegetation at night, while adults remain primarily in the littoral vegetation.
2. Oxygen consumption ( V O2) of adult and juvenile H . montezuma was measured at 20, 25 and 30 °C. The V O2 of both adult and juvenile H . montezuma increased with temperature. However, the V O2 of juveniles was significantly greater than that of adults at all temperatures, with greatest divergence at 30 °C where mean juvenile V O2 (6.31 μl mg–1 dry weight (DW) h–1) was almost twice that of adults (3.60 μl mg–1 DW h–1).
3. Survivorship of juveniles was significantly lower (54%) at 30 °C than at 27.5 °C (95%) after 4 h, whereas adults showed at least a 93% survivorship at both temperatures.
4. Our data suggest that temperature may have been the proximate cue that elicited the diel horizontal migration of juvenile H . montezuma in Montezuma Well, with the behaviour maintained and enhanced by intensive invertebrate predation in the pelagic and littoral zones.  相似文献   

7.
1. Hyalella montezuma is endemic to Montezuma Well, Arizona, and is exposed to minimal diel and seasonal temperature fluctuations in the pelagic zone (21 ± 4 °C). Juvenile H . montezuma feed in the pelagic zone during the day and migrate into the littoral vegetation at night, while adults remain primarily in the littoral vegetation.
2. Oxygen consumption ( V O2) of adult and juvenile H . montezuma was measured at 20, 25 and 30 °C. The V O2 of both adult and juvenile H . montezuma increased with temperature. However, the V O2 of juveniles was significantly greater than that of adults at all temperatures, with greatest divergence at 30 °C where mean juvenile V O2 (6.31 μl mg–1 dry weight (DW) h–1) was almost twice that of adults (3.60 μl mg–1 DW h–1).
3. Survivorship of juveniles was significantly lower (54%) at 30 °C than at 27.5 °C (95%) after 4 h, whereas adults showed at least a 93% survivorship at both temperatures.
4. Our data suggest that temperature may have been the proximate cue that elicited the diel horizontal migration of juvenile H . montezuma in Montezuma Well, with the behaviour maintained and enhanced by intensive invertebrate predation in the pelagic and littoral zones.  相似文献   

8.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   

9.
The standard oxygen consumption of flounders, PLatichthys flesus , adapted for two months to 5 and 15° C was measured during single step and fluctuating temperature changes, A considerable recovery period from handling was required before standard levels were recorded, although no locomotor activity was evident. The Q 10(adapt) value between 5 and 15° C was 2.0. Q 10 (acute) values were higher. The responses of oxygen consumption to temperature rise conform to Type I11 metabolic compensation (Precht, 1958). No compensatory response was evident at lower temperatures. An alternative explanation of the results in terms ofexcitement metabolism is suggested.  相似文献   

10.
A reappraisal of oxygen uptake by Sarotherodon mossambicus was undertaken using a continuous flow respirometer. Measurements were obtained over the temperature range 16°C–37°C for fish weighing between 10 g and 150 g. Oxygen uptake was converted to energy equivalents ( Q ox) using the value 13.68 J mg O2–1and the routine metabolic energy expenditure can be described by the equation E =0.0086 t 2 0783 M 0 652 where E is the energy requirement for routine metabolism expressed in J h-1, t the temperature in °C and M the mass in g.  相似文献   

11.
The occurrence of coral snake coloration among unrelated venomous and non-venomous New World snake species has often been explained in terms of warning coloration and mimicry. The idea that snake predators would avoid coral snakes in nature seems widely established and is postulated in many discussions on coral snake mimicry. However, the few workers that have tested a potential aposematic function of the conspicuous colour pattern focused exclusively on behaviour of snake predators towards coloured abstract models. Here we report on behaviour of temporarily caged, wild coatis (Nasua narica) when confronted with co-occurring live snakes, among which were two species of venomous coral snakes. Five different types of responses have been observed, ranging from avoidance to predation, yet none of the coatis avoided either of the two coral snake species or other species resembling these. As in earlier studies coatis appeared to avoid coral snake models, our findings show that results from studies with abstract snake models cannot unconditionally serve as evidence for an aposematic function of coral snake coloration.  相似文献   

12.
Lactobacillus amylovorus ATCC 33621 is an actively amylolytic bacterial strain which produces a cell-bound glucoamylase (EC 3.2.1.3). Conditions of growth and glucoamylase production were investigated using dextrose-free de Man-Rogosa-Sharpe (MRS) medium in a 1.5 I fermenter, with varying dextrin concentration (0.1–1.5% (w/v)), pH (4.5–6.5) and temperature (25–55°C). Cell extracts were prepared by subjecting cells to treatment with a French Pressure cell in order to release intracellular proteins. Glucoamylase activity was then assayed. The effects of pH (4.0–9.0), temperature (15–85°C) and substrate (dextrin and starch, 0–2% w/v) concentration on crude enzyme activity were investigated. Optimal growth was obtained in MRS medium containing 1% (w/v) dextrin, at pH 5.5 and 37°C. Glucoamylase production was maximal at the late logarithmic phase of growth, during 16–18 h. Crude enzyme had a pH optimum of 6.0 and temperature optimum of 60°C. With starch as the substrate, maximal activity was obtained at a concentration of 1.5% (w/v). The effects of ions and inhibitors on glucoamylase activity were also investigated. Enzyme activity was not significantly influenced by Ca2+ and EDTA at 1 mmol 1−1 concentration; however Pb2+ and Co2+ were found to inhibit the activity at concentrations of 1 mmol 1−1. The crude enzyme was found to be thermolabile when glucoamylase activity decreased after about 10 min exposure at 60°C. This property can be exploited in the brewing of low calorie beers where only mild pasteurization treatments are used to inactivate enzymes. The elimination of residual enzyme effect would prevent further maltodextrin degradation and sweetening during long-term storage, thus helping to stabilize the flavour of beer.  相似文献   

13.
M. Genoud    M. Ruedi 《Journal of Zoology》1996,240(2):309-316
Rate of metabolism, body temperature, wet thermal conductance, and evaporative water loss were measured at different ambient temperatures in four lesser gymnures Hylomys suillus. Gymnures responded as typical endothermic homoiotherms to changes in ambient temperature. Below the lower critical temperature of 32°C, they maintained a body temperature of 37.3± 0.3°C by an increased rate of metabolism. Minimum wet thermal conductance was 111% of that expected on the basis of body mass. Average basal rate of metabolism was 1.04 ml O2 g−1 h−1, which represents 106% of the expected value. Within and above the thermoneutral zone, heat loss by evaporation did not account for more than 30% of the heat produced. As a consequence, the body temperature of gymnures was maintained 4°C above ambient temperature. These metabolic and thermoregulatory patterns differ strikingly from those of other members of the family Erinaceidac and can be interpreted as a result of physiological adaptation to a different ecology. Being smaller than hedgehogs and inhabiting montane tropical rainforests, lesser gymnures lack the physiological traits which enable many hedgehogs to invade hot, arid and/or strongly seasonal environments.  相似文献   

14.
Obligately anaerobic ruminal bacteria have been found to possess phytase activity, in particular, Selenomonas ruminantium . The phytase activity of S. ruminantium JY35 was produced late in growth and required neither phytate for induction nor phosphate limitation for derepression. The activity was completely cell-associated with a significant fraction extractable by a magnesium chloride solution. Zymogram analysis suggested that the activity was the result of a single gene product of a monomeric nature and approximately 46 kDa in size. The phytase had a temperature optimum of 50–55 °C, but activity dropped off sharply at 60 °C. Phytase activity was optimal over the pH range of 4·0–5·5, and dependent on the nature of the buffer used. Activity was inhibited by citric acid buffer and by the addition of 5 mmol l−1 Fe2+, Fe3+, Cu2+, Zn2+ and Hg2+. The addition of 5 mmol l–1 Pb2+ to the enzyme assay appeared to enhance activity of the enzyme.  相似文献   

15.
Abstract The effect of temperature on CH4 production, turnover of dissolved H2, and enrichment of H2-utilizing anaerobic bacteria was studied in anoxic paddy soil and sediment of Lake Constance. When anoxic paddy soil was incubated under an atmosphere of H2/CO2, rates of CH4 production increased 25°C, but decreased at temperatures lower than 20°C. Chloroform completely inhibited methano-genesis in anoxic paddy soil and lake sediment, but did not or only partially inhibit the turnover of dissolved H2, especially at low incubation temperatures. Cultures with H2 as energy source resulted in the enrichment of chemolithotrophic homoacetogenic bacteria whenever incubation temperatures were lower than 20°C. Hydrogenotrophic methanogens could only be enriched at 30°C from anoxic paddy soil. A homoacetogen  相似文献   

16.
Routine oxygen consumption rates of young spotted seatrout Cynoscion nebulosus (Sciaenidae) were measured over a range of temperatures (24, 28, 30 and 32° C) and salinities (5, 10, 20, 35 and 45). Larvae and juveniles, 4·1–39·5 mm standard length ( L S), ranging several orders of magnitude in dry body mass were used to estimate the mass–metabolism relationship. Oxygen consumption (μl O2 larva−1 h−1) scaled isometrically with body mass for larvae <5·8 mm L S(phase I, slope = 1·04) and allometrically thereafter (phase II, slope = 0·78). The inflection in the mass–metabolism relationship coincided with the formation of the hypural plate and an increase in the relative tail size of larvae. Salinity did not have a significant effect on routine metabolism during phase I. Temperature and salinity significantly affected routine metabolism during phase II of the mass–metabolism relationship. The effect of salinity was temperature dependent, and was significant only at 30° C. Response surfaces describing the environmental influences on routine metabolism were developed to provide a bioenergetic basis for modelling environmental constraints on growth.  相似文献   

17.
Endurance and swimming speed were measured in mackerel, herring and saithe when they were induced by the optomotor response to swim at prolonged speeds along a 28-m circular track through still water in a 10-m diameter gantry tank. The maximum sustained swimming speed ( U ms was measured as body lengths per second ( b.l.s −1) for each species and for saithe of different size groups. Herring with U ms of 4.06 b.l.s −1 (25.3 cm, 13.5°C) were the fastest, mackerel U ms was 3.5 b.l.s 1 (33 cm, 11.7°C) and saithe (14.4°C) showed a size effect where U ms at 25 cm was 3.5 b.l.s 1 and at 50 cm 2.2 b.l.s 1. When swimming at speeds higher that U ms, all three species showed reduced endurance as speed increased. How the curved track reduces the swimming speed is discussed.  相似文献   

18.
Pectinatus frisingensis , a Gram-negative and strictly anaerobic beer spoilage bacterium is sensitive to nisin. An increase in nisin concentration (0 to 1100 IU ml−1) added to the culture medium prolonged the lag phase, and decreased the growth rate of the bacterium. In addition, late exponential cells of P. frisingensis exposed to low concentrations of nisin lost immediately a part of their intracellular K+. Presence of Mg2+ up to 15 mmol l−1 did not protect P. frisingensis from nisin-induced loss of viability and K+ efflux. Potassium leaks were also measured in P. frisingensis late exponential phase cells exposed to combined effects of nisin addition (100–500 IU ml−1), 10 min mild heat-treatment (50 °C) or rapid cooling (2 °C), and pH (4·0 and 6·2). Net K+ efflux from both starving and glucose-metabolizing cells, was more important at pH 6·2, whatever the temperature treatment and nisin addition. Reincubation at 30 °C of P. frisingensis glucose-metabolizing cells exposed to a preliminary combination of nisin addition and mild heat or cooling down treatment, showed that cells exposed to rapid cooling reaccumulated more K+ than heat-treated cells, whatever the pH conditions. A combination of nisin and mild heat-treatment could thus be of interest to prevent P. frisingensis growth in beers.  相似文献   

19.
The production and stability of pediocin N5p from Pediococcus pentosaceus , isolated from wine, were examined in grape juice medium. Maximum growth and higher titre (4000 U ml-1) were observed at a initial pH of 7·5 and 30°C. The activity of the inhibitory substance was stable between pH values from 2·0 to 5·0 at 4° and 30°C. At pH 10·0 it was completely inactivated. When submitted to 30 min at 80°, 100° and 115°C, maximal stability was observed at pH 2·0. Ethanol up to 10% did not affect pediocin activity at acid pH, nor did 40–80 mg 1-1 SO2, independently or combined with different ethanol concentrations, affect inhibitory activity.  相似文献   

20.
The optimum temperature for multiplication of legionella strains in culture media is around 37°C. The effect of high temperatures on the growth of strains isolated from various environments is poorly known. We studied the growth (cell multiplication, respiration) of clinical and environmental Legionella pneumophila strains in liquid media at intervals of 0.5°C in the temperature range from 41.6 to 51.6°C using a temperature gradient incubator. Cell multiplication and CO2 production decreased markedly with all the strains at temperatures above 44–45°C. CO2 continued to be produced up to 51.6C even if cell multiplication generally stopped at around 48.4–50.0C. Thus, legionella retained its metabolic activity beyond the maximum temperature for cell multiplication. The CO2 production per bacterial cell (metabolic quotient, qCO2) increased with increasing temperature up to 45°C, whereafter it decreased, the turning point being almost at the same at which the rate of cell multiplication decreased. The difference in qCO2 between the strains may reflect their different physiological capacities for tolerating high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号